(P)
$$\leq k(Q)$$
 is an extension of hink helds
 $=) G_{4}(Q)$ ($k(Q)$) is exclusion of hink helds
 $=) G_{4}(Q) (h(Q))$ is excluse and senerated by the action phosen
 $\overline{\chi} \mapsto \overline{\chi}^{4}$, $q = \# k(Q)$, $\chi \in G_{2}$

Thus define
$$\sigma_Q$$
 as the cosresponding element in G.
Suppose $\sigma \in G$ is any other automorphism with this property, i.e.
 $\sigma(x) \equiv x^{q}$ and Q

Uniquenuss 1-
$$G_{Q}$$
 clear note
b) P totally split nears $r \ge n$, $f_{i} = 1 = e_{i}$
 $=)|I_{Q}| = e = 1$, $I_{G_{Q}}: I_{Q}] = f = 1$
 $=: G_{Q}$ is brivial $=: \left(\frac{LW}{Q}\right)$ is brivel.
Conversely, suppose $\left(\frac{LW}{Q}\right)$ is brivel.
Since P unramified $=: e = 1 =: I_{Q}$ is trivial
 $=: G_{Q} \cong G_{q}h(p)(h(Q))$ is trivial
 $=: f = 1$
 $=: P$ splits completely.

.

c) Have
$$Q' = TQ$$
 for som TeG .
 $\sigma_Q(x) = x^{\#k(p)} \mod Q \quad \forall x \in G_2$
 $\neg \quad T \quad \sigma_Q(x) \equiv T(x^{\#k(p)}) \mod TQ$
 $= (T\sigma_Q)(x) \equiv T(x)^{\#k(p)} \mod Q^1$
This holds for all x , so also for $T^{-1}(x)$
 $(T\sigma_Q)(T^{-1}(x)) \equiv x^{\#k(p)} \mod Q$
 $= T\sigma_Q T^{-1} = \sigma_Q^1$