\bigcirc

Not every prime is pythagorean, eg.
$$p = 3$$
.
Lemma 1.3 If $p > 2$ is $p \neq Higgorean$, thu $p \equiv 1 \mod 4$.
Proof: $x \in \mathbb{Z}/4\mathbb{Z} \Rightarrow x^2 \in SO, 13$. Hence, if $p = a^2 + 5^2$, then $p \in SO, 1, 21$ in $\mathbb{Z}/4\mathbb{Z}$.
Last case cannot began: $p = 4k+2$ for $k \in \mathbb{Z} \Rightarrow p$ divisible by 2.
What is a sufficient condition? Answer lies in the Gaussian integer
 $\mathbb{Z}[c] = \{a + bi \mid a, b \in \mathbb{Z}\}, i = \sqrt{-1}$
Namely: if $p = a^2 + 5^2$, then $p = (a + 5i)(a - 5i)$ as factorization question in $\mathbb{Z}t.$
Proof 1: Let $N: \mathbb{Z}t: J \to N$, $x = a + 5i + 5 = a^2 + 5^2 = x^2$, be the norm hunction.
We claim that for $x, y \in \mathbb{Z}t. J$, $y \neq 0$, then is $q r \in \mathbb{Z}t. J$ with $x = qy + r$
and either $r = 0$ or $N(r) < My!$
Note:
 $N(r) < N(y) <> N(\frac{r}{4}) < 1 <> N(\frac{r}{4} - q) < 1 <> \left(\frac{x}{4} - q\right) < 1$.
S this somewhere in the complex place:
 $a + (5ei)d$
 $= \frac{N(av) + 6i}{2}$
Biggomal of this squam has legth $\sqrt{2}$. Hence, can bind $q \in \mathbb{Z}t. J$

with $\left|\frac{x}{y}-y\right| = \frac{\sqrt{2}}{2} < 1.$

So, Iti) in particular a factorial ring, i.e. any element can be factored (3)
into prime element, factorization ungue up to units.
Let's detormine the units and the prime elements
Lemma 1.5 XEZED is a Unit iff
$$M(X) = 1$$
. Hence
 $ZEDX = S1, -1, c, -c3.$
Proof: Let $X = a+Si, y = c+dic ZED.$ The
 $1 = xy = 1 = N(1) = N(X)N(y) = (a^2+S^2)(c^2+d^2) => a^2+S^2 - 1$
product of
 $replic d = N(1) = N(X)N(y) = (a^2+S^2)(c^2+d^2) => a^2+S^2 - 1$
 $Proof: a prime the question:
Prop 1.6 The following an equivalent:
a) p is pyllogorean.
b) p is not a prime anymore i ZED
 $c) p = 2$ or $p \equiv 1 \mod 4$.
Proof:
 $a \Rightarrow c:$ Lemma 1.3.
 $c \Rightarrow b:$ For $p = 2$ we have $2 = (1-i)(1+i)$, reducible \Rightarrow not a prime.
For $p \equiv 1 \mod 4$ well use a general fact:
 $\overline{Wilson'r dheorem}: (p-1)! \equiv -1 \mod p$ for any prime p.
 $Proof:$ Any $x \in Z/pZ = F_p$ has an inverse, and there is unique.
 $M: x = x^{-1}$, then $x^2 = 1$, so $D = x^2 - 1 = (X+1)(x-1) \Rightarrow x = 1$ or $x = -1 = p-1$
 $i = F_p$. Hence, in$

)

$$(P-1)^{j} = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (Y-2)(P-1)$$

-1

We can pair each factor #1, p-1 with its unique and distinct investe. Lubrat remains is (p-1)!= 1. (p-1)=-1 in Fp. D

Buch to
$$p = 1 \mod 4$$
, i.e. $p = 4n + 1$. Mod p we have

$$-1 = (p-1)! = (4n)! = 1 \cdot 2 \cdots (2n) (2n+1)(2n+2) \cdots (4n-1)(4n)$$

$$= 1 \cdot 2 \cdots (2n)(p-2n)(p-2n+1) \cdots (p-2)(p-1)$$

$$\operatorname{red}_{\underline{p}}^{n}(2n)! \cdot (-1)^{2n}(2n)! = ((2n)!)^{2} \operatorname{red}_{\underline{p}}.$$
Iknce, $2n + 1 \operatorname{red}_{\underline{q}}(2n)! \cdot (-1)^{2n}(2n)! = p \operatorname{divdes}_{\underline{q}} c^{2}+1 = (c+1)(c-i) + \overline{\mathcal{I}}(i].$
But p does not divide any of the two factors: $p \cdot (a+1i) = c \pm i$
 $\Rightarrow pa = c = (2n)! + \Rightarrow p$ is not a prime element in $\overline{\mathcal{I}}(i).$

$$\underline{b} \Rightarrow a \cdot \exists_{\underline{q}}p_{\underline{p}} \approx p$$
 is not a prime element in $\overline{\mathcal{I}}(i).$

$$\underline{b} \Rightarrow a \cdot \exists_{\underline{q}}p_{\underline{p}} \approx p$$
 is not a prime element in $\overline{\mathcal{I}}(i).$

$$\underline{b} \Rightarrow a \cdot \exists_{\underline{q}}p_{\underline{p}} \approx p$$
 is not a prime element in $\overline{\mathcal{I}}(i).$

$$\overline{\mathcal{I}}(i) \text{ is factoric}(=) p \text{ not irreducible = s } p = Xy \text{ with non-zero non-units}$$

$$X_{\underline{q}} \approx \overline{\mathcal{I}}(1)$$

$$= p^{2} = M(p) = M(x)M(y)$$
By Lemma $1.5 \Rightarrow M(x)M(y) = 1 \Rightarrow p = N(x) = a^{2}tS^{2}, x = a + 5i$

$$\Rightarrow p \text{ is post-prime}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p > 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p < 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p < 2 \quad py \text{thesprean}$$

$$\frac{1}{2mach} 1.7 \quad p < 2 \quad p = 1 \quad p \text{ to } 1.7 \quad p < 1.7 \quad p$$

Proof
$$T$$
 in a and 5 is prime since $N(T)$ is prime (and T is backonial).
This calls prime by Prop 1.6
Let $T \in T$ is be an arbitrary prime. Let $N(T) = p \cdots p_r$ with prime number p :
 $M(T) = T \cdot T$ about $N(p) = p^2$. $\Rightarrow N(T) = p$ or $N(T) = p^2$.
If $N(T) = p \cdot T = a + i$ with $a^2 + b^2 = p = p$ is either case a or S .
If $N(T) = p^2 = M(p) \Rightarrow N(T) = 1 = p$ is a unit by Lemma 1.5 $\Rightarrow T$ is case.
We must have $p = 3 \mod 4$ since otherwise not a prime by Bray 1.6.
Corollary 1.9 A prime number $p \in T$ factorizes in $T \in I$ as follows:
a) If $p = 2$, the $p = -i(1+i)^2$
b) If $p = 3 \mod 4$, the $p = (a + ib)(a - ib)$
c) If $p = 3 \mod 4$, the $p = stary prime
 $T = \frac{2}{3} = \frac{2}{5} = T = 11$ 12$

1.2 Review "Elementary" number theory problem => splitting of primes in ZEi]. Had to establish properties of ZEI (factorial, unit). other number theory problems => similar ning, e.s. ZEV-57, called nings of integers Definition?