$$\frac{1}{dea} of the "round-2" algorithm Suppose we can compute (generators of) mulp (6), be then check whether nulp (6) = 6. (f so, the Gp = G and we have found the p-maximal average nulp (6) = 6. (f so, the Gp = G and we are one shp closer to the province overable. Repeat this, get Gp after finitely many steps. lowned 528: radp (6) " $\leq p$ 6.
 Proof: Since radp (6) = p6, we can consider $T := radp(6)/r6$.
 We then get a dain
 $G/p_G = I = I^2 = ...$
 Recall that $G/r6$ is an Tp -vector space of dimension n . The I^{V} are subspace
 Number of the sub-set of size $I^{V} = I^{V} = ...$
 Recall that $G/r6$ is an Tp -vector space of dimension n . The I^{V} are subspace
 Number of the sub-set $I^{V} = I^{V} = I^{V} = ...$
 Recall that $G/r6$ is an Tp -vector space of dimension n . The I^{V} are subspace
 Number of the static cannot be infinite, i.e. it must become stationary
 after at mark n show.
 If $I^{V} = I^{V} + I^{V} = I^{V} + I^{V} = I^{V} + I^{V} = 0$ (accome $yhap G$ for some h).
 Since G/p_G is a g of Tp or the last $I^{V} = 0$ (accome $yhap G$ for some h).
 Since G/p_G is a g of Tp or I^{V} builte, so we can find a single heat such that
 $I^{V} = O =$) radp $(G)^{P} = P_{G}$ D
 $I^{V} = 0 =$) radp $(G)^{P} = P_{G}$ D
 $I^{V} = 0 =$) radp $(G)^{P} = 0$.
 $I^{V} = 0$ D
 $I^{V} = 0$ for all g aread f of $f = 0$.
 $I^{V} = 0$ is a finite $I^{V} = 0$.
 $I^{V} = 0$ is a read to show that $rwip(6) \neq 6$.
 Since $G_{p} = I^{V} = 0$ is read to show that $rwip(G) \neq 6$.
 Since $I_{G} = G$ is a prover of p by terma 5.16 and $[G : radp G]$ is a
 prover of P_{1} so is $[G_{p} : radpG]$.
 Note, then $I^{V} = 0$ will p^{V} .
 $G_{p} = radp_{G}$$$

By Lemma 5.28, have
$$\operatorname{rad}_{p}(6)^{n} \leq p \leq p \leq \operatorname{rad}_{p}(6)^{n+1} \leq (p \leq p \leq p \leq 2)$$

=) $\operatorname{rad}_{p}(6)^{n+1} \leq p \leq p \leq p \leq p \leq p \leq 2$.
Let make minimal with $\operatorname{rad}_{p}(6)^{m} \leq p \leq \operatorname{rad}_{p}(6)$.
(onside two cases.

)

$$\underline{m = 1}: Then radp(G) \cdot Gp = radp(G), so$$

$$G_{p} = [rodp(G)/rodp(G)] = mulp(G).$$
Since $G_{p} \neq G$, hence also $nulp(G) \neq G$.
$$\underline{m > 1}: B_{y} \text{ minimchity of m and since $m > 1$, there is $x \in rodp(G)^{m-1} \cdot G_{p}$
with $x \not\in rodp(G)$.
We claim that $x \in mulp(G) \setminus G$, proving that $nulp(G) \neq G$.
Firsd, since
$$x \cdot rodp(G) \equiv radp(G)^{m} \cdot G_{p} \equiv radp(G)$$
if follows that $x \in mulp(G)$.
Suppose that $x \in G$.
We have $x^{2} \in rodp(G)^{2m-2} = G_{p} \in radp(G)$.
$$\frac{r}{2m-2m}$$
flace, there is $j \in N$ with $p \in j \geq x^{2} i^{j} = x^{2} i$

$$= > x \in rod(rG) \bigvee to choice of x.$$
lifting.
We shill have to make the row-2 algorithm constructive.
We can branslak verything two lines algebra problems over $\#_{p}$ and \mathbb{Z} .$$

Pamosk 5.29 Computes alpera systems usually with vectors in rows consider v.A., e.g. the herml of a matrix A is $\int v | v \cdot A = 0$? We use the same convention in this course. <u>Example 5.30</u> Consider L= $O(\alpha)$ for $\alpha = root$ of $f = X^3 - X^2 - 2X - 8$. Led G be the order with basis $51, \alpha, \frac{\alpha^2 - \alpha}{2}$? $U = \frac{11}{2} \sqrt{\frac{\alpha}{2}}$?

Computation of invocar can be done similarly by base change to stol basis.

Lemma 531
If k is such that n ≤ p^k, then radp(6)/pG is the kernel of the
Fp-vector space map G/pG → G/pG, x→ x^{ph}.
Proof: Suppose XGG st.
$$\overline{\chi}^{rh} = 0 \Rightarrow \chi^{rh} = pG = \chi_{Gradp}(6) = \overline{\chi} \in radp(6)/pG.$$

Conversely, if $\overline{\chi} \in radp(6)/pG$, then $\overline{\chi}^n = 0$ since $radp(6)^n = pG$ by
Lemma 5.28, so $\overline{\chi}^{rh} = 0$ since $p^{h} \ge n$.
Skp1: Choose k∈N such that $n \in pk$
Skp2: The elements $\overline{\omega}_{n,n} = \sqrt{n}$ are an *Hp*-space basis of G/pG.
For ead is compute $\overline{\chi}_{1}^{ph}$ and express it basis (use § 5.6)
Whethese vectors a neur 1-fo a metrix A.
Skp2: Compute the (nght) hered of A. (these clasters of the x:.
Skp2: Let $\beta_{1} \cong$ representations of the $\overline{\beta}_{1}$ (diamed by taking the neuxie of α_{1})
Then radpG = PG + $\overline{Z} \cdot S\beta_{12-1}\beta_{12} = \overline{Z} \cdot \{P\alpha_{12-1}, P\alpha_{13}, P_{13}\}$.
Skp5: Which the PX₂, $P\alpha_{1}, \beta_{12-1}\beta_{1}$ as rows the a matter the
and compute the HNF B of A.
Then the neu-zero rows of B firm a taxis of radp6.