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6.5Discretenessoflattices
Back to a general lattice in IR consideredwiththe standardbasis

er en and standardscalarproduct c
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For a constant C 0 we are interested in
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So we need to find latticepointinside the ellipsoid
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Now do a backtrack search

1 Find the xn EI with 1Xul e JTn Em Claim
2 For fired X it s yXuC E satisfying
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determine allpossibilities for ti as follows
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and then find the ri with
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This is a constructive algorithmand it is clear that

Corollary6 I7
For each C so there are onlyfining many eh withHelleC

J r is a discretesubset ofRn
I tf HDn en is a sequence in h whichconverges to KEIR the teh
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6.6Shortestvectorsand latticedensity

or 6.17 a impliesthat contains a shortest non Zero vectorBy 6.4 we
have an algorithm to find one Let X n be thelengthoftheshortestvectors

This quantity is related to thedensityof A

For re42 and r c IR o let BY x r yc.IR Hxgue r betheballof radius r
centered at x A spherepacking is a collection
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forsomeset Xc42 sad that the ballshavepairwisedisjoint interior

The density g p ofP quantifieshowmuchofthevolumeof IR is madeupof P
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ballof red t centered in 0

If X A is a lattice the P is called a latticespherepacking eg



Since his additive we have
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fence the maximal radius fortheballs of a latticespherepackingwithX L
s IX d The corresponding density ga is the densityof h

This can becomputedrelative to the volumeof the fundamentalregion

Recallfrom 6.2 that I 2aisi lo e ai ei3
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is independentof the chosenbasis

By symmetry you can see that
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g N toff 2 nun is the densityof A

For fixed n what is themaximaldensity one can achievewith a lattice
spherepacking Thisamounts to knowing
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Lattice lattice

8 is calledHermiteconstant
so gn 2 kn

This is onlyknown in a few cases

n 1 2 3 4 5 6 7 8 gene 2324 nz25

run 1 413 2 4 8 6413 64 256 424

L I 0.907 0.74 0.617 0.465 0.373 0.2950.254 0,002

T t
Kepler Leech
conjecture FACT Jp is a rationalnumber Lattice
generalpackings

hespherepacking interpretation immediatelygives us an upperboundfor dry
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In other words the ball
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contains a non zero latticepoint
We have
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There's a generalization of this observationcalled

Minkowski's first

theorem or convexbodytheorem


