Lecture 13 (9.12.)

$$\frac{6.5 \text{ Discreteness of lattices}}{8 \text{ Bach to a general lattice } in R^n, considered with the standard basis $e_{A_1 \cdots , e_n}$ and standard scalar product $< \cdot, \cdot >$
Let $V_{A_1 \cdots , V_n}$ be a basis of Λ , $Q_1 = Gr_n(v_{A_1, V_n}) = (< V_{i'1}V_{i}>)$, and $V_i = \sum_{i} A_{i'_i}e_{i'_i}$, so $Q = A A^{t'_i}$.
Let $x \in \Lambda$, so $x = \sum_{i} X_i V_i$. Then
 $||X||^2 = \langle X, X \rangle = \sum_{i'_i} X_i X_i \langle V_i, V_i \rangle = \sum_{i'_j} X_i X_j Q_{i'_j} = x Q X^{t'} =: Q(X)$
For a constant $C > D$ we are interested in
 $\{ X \in \mathbb{Z}^n \mid ||X||^2 \in C_i^3$.
So, we need to find (attree point inside the ellipsord
 $\int X_i C R^n \mid Q(X) \leq C_i^3$
Let \widetilde{Q} be the quadratic supplement of Q_i , so
 $Q(X) = \sum_{i=1}^n \widetilde{Q}_{i,i} \left(X_i + \sum_{i'_j=i+1}^n \widetilde{Q}_{i'_j} X_i \right)^2$
Then
 $\widehat{Q}(X) \leq C \in \widetilde{Q}$ is $(X_i + \sum_{i'_j=i+1}^n \widetilde{Q}_{i'_j} X_i)^2 \leq C - \sum_{i'_j=i+1}^n \widetilde{Q}_{i'_j} X_i)^2 =: T_i C R^n$$$

for
$$i = n, n - 1, ..., l$$
.
Now, do a bochbrack search:
1. Find the $X_n \in \mathbb{Z}$ with $|X_n| \leq \sqrt{T_n/Q_{nn}} = \sqrt{C/Q_{nn}}$
2. For fixed $X_{i+1}, ..., X_n \in \mathbb{Z}$ satisfying
 $\sum_{\substack{p=i+l}}^{n} \widetilde{Q}_{pp} \left(X_p + \sum_{\substack{q=p+l}}^{n} \widetilde{Q}_{pj} X_{ij}\right)^2 \leq T_{i+1}$

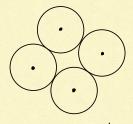
 \bigcirc

determine all possibilities for xi as follows.

$$U_{i:} = \sum_{j=i+1}^{\infty} \widetilde{Q}_{ij} X_{ij} \text{ for } n-i \ge i \ge 1$$
and then find the xi with
$$-\sqrt{T_i/\widetilde{Q}_{ij}} - U_i \le X_i \le \sqrt{T_i/\widetilde{Q}_{ij}} - U_i$$
This is a constructive algorithm and it is clear that:
Cordlary 6.17
a) For each C>O there are only finitely many X e A with $\|X\| \le C$.
b) A is a discrete subset of \mathbb{R}^n .
c) If (Xn)nGN is a sequence in A which converges to XGRⁿ, the XeA.

$$\frac{6.6 \text{ Shocked vectors and lattice density}}{(\text{or } 6.17 \text{ a}) implies that A contains a shocked non-zero vector. By §6.4 we have an algorithm to kind one. Let $\lambda_n(\Lambda)$ be the length of the shocked vectors. This guarkity is related to the density of A.
For $x \in \mathbb{R}^n$ and $r \in \mathbb{R}$ to let $\mathbb{B}^n(x,r) = \{y \in \mathbb{R}^n \mid \|x-y\| \leq r\}$ be the ball of redius r .
Centered at x . A sphere paching is a collection
 $P = \bigcup \mathbb{B}^n(x,r)$
for some set $X \subset \mathbb{R}^n$ such that the balls have pairwise divisoint interior.
The density $g(P)$ of P guarbifies how much of the volume of \mathbb{R}^n is made up of P ,
precisely:
 $g(P) = \lim_{t \to \infty} \frac{Vol(P \cap \mathbb{B}^n(t))}{Vol(\mathbb{B}^n(t))}$
Lodd of red, t condered in Q .$$

If X= 1 is a lattice, then P is called a lattice sphere packing, C.g.



Since A is additive, we have

$$\lambda_{n}(\Lambda) = \min \|X\| = \min \|X - Y\|$$

$$\chi_{Y} \in \Lambda$$

$$\chi_{Y} \in \Lambda$$

$$\chi_{Y} \in \Lambda$$

$$\chi_{Y} = \Lambda$$

We have

$$\operatorname{Vol}(B^{n}(r)) = \frac{\pi^{n/2}}{\Gamma(n/2+1)} r^{n} = \underbrace{\operatorname{Vol}(B^{n}(1))}_{=: \mathcal{X}_{n}} \cdot r^{n}$$

$$\operatorname{Leules Gamma}$$

=>
$$g(\Lambda) = \frac{\lambda_n(\Lambda)^n}{d(\Lambda)}$$
. $2^{-n} \kappa_n$ is the density of Λ .

For fixed n, what is the maximal density one can adviewe with a lattice Sphere packing? This amounts to hundring (3)

This is only known in a few cases:												
	ท	1	2	3	4	5	6	7	8	9≤n≤23	24	n 225
	sς ν	1	4/3	2	Ч	8	64/3	64	256	?	424	2
~~	ps s	1	0.907	0.74	0.617	0.465	0.373	0.295	0,254	2.	0,002	2.
				0.74 0.617 0.465 0.373 0.295 0.254 ? t Kepler conjecture $\underline{FACT}: y_n^2$ is a rational number, (general pecturys)							t Leech Lathice	

The sphere packing interpretation immediately gives us an upper bound for $\lambda_{\lambda}(\Lambda)$:

$$\begin{split} &\mathcal{L}_{n} \leq 1 \\ \Rightarrow & \frac{\lambda_{n}(\Lambda)^{n}}{d(\Lambda)} \cdot 2^{-n} \kappa_{n} \leq 1 \\ & (\lambda_{n}^{2})^{n} \leq \Gamma(\frac{n}{2}+1)^{2} \left(\frac{4}{17}\right)^{n} d(\Lambda)^{2} \\ \Rightarrow & \frac{\lambda_{n}(\Lambda)^{n}}{d(\Lambda)} \cdot 2^{-n} \kappa_{n} \leq 1 \\ & \text{from } \mathcal{L}_{n}(\Lambda)^{n} \leq 2^{n} \mathcal{L}_{n}^{-1} d(\Lambda) = \Gamma(\frac{n}{2}+1) \cdot \frac{2^{n}}{\pi^{n}/2} \cdot d(\Lambda) \\ \Rightarrow & \lambda_{n}(\Lambda)^{n} \leq 2^{n} \mathcal{L}_{n}^{-1} d(\Lambda) = \Gamma(\frac{n}{2}+1) \cdot \frac{2^{n}}{\pi^{n}/2} \cdot d(\Lambda) \\ & \text{if } \mathcal{L}_{n}(\Lambda) \leq 2 \mathcal{L}_{n}^{-1/n} d(\Lambda)^{1/n} \\ & \text{Hermite's } \left(\frac{4}{3}\right)^{\frac{n-1}{2}} \text{for } n \geq 8) \end{split}$$

In other words, the ball

$$B_{i=} \leq \|X\| \leq 2x_{n}^{-\gamma_{n}} d(\Lambda)^{\prime n} \leq R^{n}$$

contains a non-zero lattice point.
We have
 $vol(B) = \chi_{n} \cdot (2x_{n}^{-\gamma_{n}} d(\Lambda)^{\prime n})^{n} = 2^{n} d(\Lambda)$
There's a generalization of this observation called Minhowski's first
theorem (or convex body theorem).