Lecture 17 (6.1.) We call units as in lemma 7.8 Dirichlet units. We will now construct such units. This needs some preparation.

For any i, leierts-1, there is Ci ER so such that given any non-zero
$$\alpha \in G$$
 there is a non-zero β in G such that
 $1 \cdot |N(\beta)| \leq Ci$
 $2 \cdot |\sigma_j(\beta)| \leq |\sigma_j(\alpha)| \quad \forall j \neq i.$
Proof: We will show that $C_i = (\frac{2}{\pi})^S \sqrt{1d_G}$ works (independent of i).
For $1 \leq j \leq r+s$ choose $\alpha = \alpha_j > O$ such that
 $\alpha_j \leq |\sigma_j(\alpha)| \quad (note: \alpha \neq 0 =) = \sigma_j(\alpha) \neq 0, so this is possible)$

For
$$1 \le j \le r+s$$
 define $C_{i,j} := a_{ij}$ if $j \ne i$ and let $C_{i,i}$ be such that

$$\frac{r+s}{11} C_{ij}^{c,j} = \left(\frac{2}{\pi}\right)^{S} \sqrt{|d_{6}|} = C_{i}.$$

$$C_{ij}^{c,j} = \left(\frac{2}{\pi}\right)^{S} \sqrt{|d_{6}|} = C_{i}.$$

Consider the set E: = E: (x) CR XR of all (1/k)/k=1 Such that

The

$$Vol(E_{i}) = \frac{r}{1/2} 2C_{i,j} \cdot \frac{r+s}{1/2} \pi \cdot 2C_{i,j}^{2} = 2^{r+s} \pi^{s} \frac{r+s}{1/2} C_{i,j}^{c}$$
$$= 2^{r+s} \pi^{s} \left(\frac{2}{\pi}\right)^{s} \sqrt{|d_{c}|} = 2^{r+2s} \sqrt{|d_{c}|} = 2^{n} d(\lambda),$$

Where $\Lambda = j(G)$ is the Minhowski Lattice. Hence, by Minhowshi's Lattice point theorem (Thm 6.18), there is a non-zero point BEG with $j(\beta) \in E_i$. For such a point we have (Γ)

$$\begin{split} \dot{J}(\beta) = & \left(\sigma_{A}(\beta), ..., \sigma_{r}(\beta), \sqrt{2} \operatorname{Res}_{r+1}(\beta), \sqrt{2} \operatorname{Ims}_{r+1}(\beta), ..., \sqrt{2} \operatorname{Res}_{r+s}(\beta), \sqrt{2} \operatorname{Ims}_{r+s}(\beta)\right)^{(2)} \\ & \left(\sqrt{2} \operatorname{Res}_{i}(\beta)\right)^{2} + \left(\sqrt{2} \operatorname{Ims}_{i}(\beta)\right)^{2} \leq 2C_{ij}^{2} \\ = & \left(\sigma_{ij}(\beta)\right)^{1} \leq 2|\sigma_{ij}(\beta)|^{2} \leq 2C_{ij}^{2} \\ = & \left(\sigma_{ij}(\beta)\right)^{1} \leq 2|\sigma_{ij}(\beta)|^{2} \leq 2C_{ij}^{2} \\ = & \left(\sigma_{ij}(\beta)\right)^{1} \leq C_{ij} \end{split}$$

Hence, we have 15; Hence,

$$|\sigma_{j}(\beta)| \leq \alpha_{j} < |\sigma_{j}(\alpha)| \quad \text{for } j \neq i$$

and

$$|N(\beta)| = \frac{n}{11} |\sigma_j(\beta)| = \frac{rt}{1/2} |\sigma_j(\beta)|^{c_0} \leq \frac{1}{12} C_{i_0}^{c_0} = C_{i_0}$$

Lemma
$$10$$

Give CER, there are only finitely many non-associate elements de G
with $|N(d)| \leq C$.

Proof:

Since
$$N(\alpha) \in \mathbb{Z}$$
 for $\alpha \in G$, c_{Gn} assum $C \in \mathbb{N} \neq 0$.
Let $T := C \cdot G$, non-zero ideal of G. We first prove the fillowing
Claim: If $\alpha_{1}\beta \in G$ are sud. Hat $\alpha_{-}\beta \in T$ and $|M(\alpha)| = C = |N(\beta)|$, then they
are associated.
Proof: We have $\alpha_{-}\beta = j \cdot C$ for some $j \in G$. Hence,
 $\frac{\alpha}{\beta} = 1 + \frac{C}{\beta} \cdot j = 1 + \frac{W(\beta)}{\beta} \cdot j$
Let $(\chi_{\beta} = \sum_{i=0}^{n} a_{i}\chi^{i}$ be the characteristic polynomial of β . Then $a_{0} = \pm N(\beta)$.
Hence $O = |\chi_{\beta}(\beta) = \pm M(\beta) + \sum_{i=1}^{n} a_{i}\beta^{i} = \pm N(\beta) + \beta \cdot (\sum_{i=1}^{n} a_{i}\beta^{i-1})$
 $\Rightarrow |\frac{N(\beta)}{\beta}|_{G}G \Rightarrow \frac{\alpha}{\beta} \in G$.
Similarly, $\frac{\beta}{\alpha} \in G \Rightarrow \frac{\alpha}{\beta} \in G$ is a unit = α and β are associated.

Now let A:= for 1 we 6, 14(6)=C1 = 6/T. By Lemme 5.23, dim z I = dim z 6, 3)
So 6/Z, and this dirs finite. Let
$$\alpha_{A,m}, \alpha_{A}$$
 be representatives of A. 14 we 6 with INCOMP
then $\alpha = \alpha_{A}$ and I for sine $i = 3 \alpha_{A} \alpha_{A}$ associate.
Now, we can prove:
Prop 7.11
There are $e_{A,m}, e_{A+A-1} \in G^{+}$ satisfying the properties of Lemma 7.8?
Ikence, $G^{+}/TU(G)$ is free of rank $r+s-1$ and $j^{+}(G^{+}) \subset \mathbb{R}^{r+s-1}$ is a lettice.
Proof:
There each i, 15 is (rss-1), do the billowige.
Choose Ci as in Lemma 7.7. Choop a non-two $\alpha_{i,1} \in G$.
By Lemma 7.9, then is a non-zero $\alpha_{i,2} \in G$ with $|N(\alpha_{i,2})| \leq Ci$ and
 $|G_{i}(\alpha_{i,1})| < |G_{i}(\alpha_{i,1})|$ $V_{i} \neq i$.
Property this process yields a sequence $\alpha_{i,k} \in G$ with
 $|N(\alpha_{i,k})| \leq Ci$, $|G_{i}(\alpha_{i,k})| < |G_{i}(\alpha_{i,k+1})|$ $V_{i} \neq i$.
By Lemma 7.10 there are only finitely many non-associate elements in G
with norm bounded by Ci. Hence, there is $k, h^{1} \in M$, $k^{1} > k$, such that
 $E_{i} := \frac{\alpha_{i,k}}{\alpha_{i,k}} \in G^{+}$
We have
 $|G_{i}(e_{i,k})| = \frac{G_{i}(\alpha_{i,k})}{G_{i}(\alpha_{i,k})} < 1$.
Since $E_{i} \in G^{+}$, we have $N(E_{i}) = 1$ and since $N(E_{i}) = \prod_{i} G_{i}(E_{i})$,
we must have $|G_{i}(E_{i})| > 1$.
The examptions of Lemma 7.0
 $=$ they are linearly independent $=$ $dim_{Z} \in T_{i}(G) \geq r+s-1$.
By Prop 7.6 $\leq r+s-1$, hence $= r+s-1$.

achieve this.

Shop 3 is about the bollowing. We have a subgroup
$$W = \mathbb{Z} \cdot \{ \mathcal{E}_{n-1}, \mathcal{E}_{n-1} \}$$
 of finite \mathbb{C}
inclus in G^{+} . We need to chack whether $W = G^{+}$ already, and if not need to enterps U .
The situation is very similar to the computation of an integral basis (\$63)
 $G^{+}_{(U)} \simeq \mathbb{Z}/p_{n}^{n}\mathbb{Z} \times ... \times \mathbb{Z}/p_{n+\mathbb{Z}}^{n}$, where $[G^{+}: U] = p_{n}^{n} \cdots p_{n}^{n}\mathbb{Z}$.
Hence, for any $p \mid [G^{+}: U]$ we have to determine the maximal p-subgroup Up
of G^{+}_{0} . Up = $\{x \in G^{+} \mid x^{k} \in U$ for k some power of p^{2}_{0} for kert whether $U = U_{p}$ already).
There is an algorithm to compute U_{p} (we skip this note that for G we used that G
is a ring; G^{+} in just a group).
What are the "critical" primes ?
We have $[G^{+}: U] = \frac{re_{0}}{re_{0}} U$
Suppose we can bound $B \leq re_{0} G$ Then
 $[G^{+}: U] = \frac{re_{0}U}{B}$.
We flux would goed (over bounds for the regulator of G .
Prop 7.16 (without proof, skipped)
Let $j_{2}^{+}: L \rightarrow \mathbb{R}^{n}$, $\alpha \mapsto (\log |g_{0}(x)|)_{i=1}^{n}$. Let $\Lambda := j_{2}^{+}(G^{+})$, a lattice
 $(re_{0}^{+}C)^{2} \geq \frac{2^{5}\lambda_{n}(N) \cdots \lambda_{resn}(\Lambda)}{N Y_{risn}^{risn}}$