Lecture 19 (13.1.)
Finally:
Droof of Thm 8.12
Existence of a factorization: Let M se the set of all ideals which do not have
a factorization. Suppose,
$$M \neq \emptyset$$
. Then by Zorn's Lemma, M has a narmal
element I. Since I $\neq R$, it is contained in a maximal ideal R Since $R \equiv P'$;
we set:
 $I \subseteq IP^{-1} \subseteq PP^{-1} \subseteq R$.
By Lemma 8.14, $I \notin IP^{-1}$ and $P \notin PP^{-1}$. Since P is maximal and $PP^{-1} \subseteq R$ is
an ideal, we must have $PP^{-1} \subseteq R$. Since $I \subseteq M$, it cannot be a prime ideal, so
 $I \not\subseteq P$, hence $IP^{-1} \notin PP^{-1} = R$. Hence $I \not\subseteq IP^{-1} \not\subseteq R$. By maximality of I in M,
we thus have $IP^{-1} \not\equiv M$, so $IP^{-1} = P_A \dots P_c = \Im I = IP^{-1}P = P_A \dots P_r = \mathbb{R}$ then
 $Q_A := Q_B \subseteq R$, so $Q_i \subseteq P_A$ for some i (by general lack in proof of Lemma
8.14). When $Q_A = R$, Since R is one-dimensional, $Q_A = R$. Moreover, $P_A \neq P_A^{-1} \subseteq R$ by
Lemma 8.14, so $P_A^{-1} = R$ since P_A is maximal. Authority the factorization is φ_A
 $P_A^{-1} dres yields $P_2 := P_1 = Q_2 := Q_S$. Inductively we deduce that $r = S$ and
 $Q_i = P_i$ is (after reording oppography).$

Collecting equal prime ideals in a factorization, we see that any ideal I has a factorization $T = P_n^{u_n} - P_r^{u_n}$ with unique r, prime ideals P_i , and $u_i > 0$.

Example 8.15 Recall that in TEV-5] CQ(V-5) we have

$$21 = 3 \cdot 7 = (1 + 2\sqrt{-5})(1 - 2\sqrt{-5})$$

Let

 $P_{A} := (3, 1 + \sqrt{-5}) \qquad P_{3} := (7, 3 + \sqrt{-5}) \\ P_{2} := (3, 5 + \sqrt{-5}) \qquad P_{4} := (7, 4 + \sqrt{-5}) \\ P_{4} := (7, 4 + \sqrt{-5}) \\ P_{5} := (7, 4 +$

$$\begin{aligned} & [Exercise: The P_{c} \text{ are prime ideals and} \\ & (3) = P_{1}P_{2}, (7) = P_{3}P_{4}, (1+2\sqrt{-5}) = P_{2}P_{4}, (1-2\sqrt{-5}) = P_{1}P_{3} \\ & = > (21) = \begin{cases} (3) \cdot (7) = P_{1}P_{2}P_{3}P_{4} \\ (1+2\sqrt{-5})(1-2\sqrt{-5}) = P_{2}P_{4}P_{1}P_{3} \end{cases} \end{aligned}$$

Thin 816
Every Non-2000 bractional ideal of R is invertisle.
Proof:
14 P is a non-two prime ideal, then
$$P \neq PP^{-1} = R$$
 by Lemma 8.14, so $PP^{-1} = R$
since P is maximal. Hence, P is invertisle. Then, by Thin 8.12, every non-zero ideal
is invertisle. If I is fractional, then $rI = R$ for some $r \neq 0$, hence (rI)
is invertisle. Have $(rI)^{-1} = r^{-1}I^{-1} =)R = (rI)(rI)^{-1} = (I)(r^{7}I^{-1}) = II^{-1}$
 $=) I$ is invertisle.
Cosollary 8.17
Every fractional ideal I has a factorization $I = P^{U_{1...}}P^{U_{1...}}P^{U_{1...}}$ will unique
 r_{1} prime ideals $P_{1...}$ and $U_{1...} \in I \setminus S^{0...}$
Corollary 8.18
The is the free abelian group with basis the non-2000 prime ideals of R.
Runash 8.19
Declekind domains are precisely the integral domains in which every non-2000
fractional ideal is invertisle.
Lemma 8,20

Hence, the CLR measures how for a Dedekind domain is from being a PID. CLR can be arbitrarily complicated; every adelicity group is the Class group of some Dedekind domain!

8.3 Finikness of the class group Throughout, R is the ring of integers in a number field 2 (special case of Dedekind domain). Here, the situation is much nices: he will show that $CL_{2}=C(R \text{ is } \frac{\text{finite}}{2})$. This will follow from Minhouski' theory. Another important ingredient is the ideal norm: recall from Lemma 5,23 that a non-zero ideal IGR is a free Z-module of the same dimension as R, hence [R:I] = |R/I| is finite.

Del 8.21

$$N(I) := [R:I]$$
 is called the (ideal) norm of I.
Remark 8.22
For a general Dedehind domain R if is not true that R/I is finite: take e.g.
 $R = QIXS$ (a PID) and $I = (X) \Rightarrow R/I \cong Q$.
The terminology "norm" is justified by the following property
lenana 8.23
 $II O \pm a \in R$, the $|N_{LIQD}(a)| = N((a))$.
Prod:
Let $A_{AJ,m}, K_m$ be a Z -basis of R . The $ad_{AJ,m}, aK_m$ is a Z -basis of (q) .
Write $a \propto_l = \sum_{i=1}^{n} a_{ij} \propto_j$ and let $A := (a_{ij})$. The $det(A) = N_{LIQD}(a)$
by definition (see Del 2.28). Moreover, $|del(A)| = (R : I)$.
 $Rood_i$:
 $IE : Oeal (a norm is neultiplicative: $N(II) = N(I)N(I)$.
Proof:
 $Sy ideal factorization (R is Dedekind), if ordfree to show that if $I = P_{i}^{Q_{im}} P_{i}^{Q_{im}}$.
By the Chinese Annairely Theorem we have
 $R/I \cong \prod_{i=1}^{n} R/P_{i}^{U_{im}}$.
It is thus ordfreight to show the daim for $I = P_{i}^{U_{im}}$.
We have a drain
 $P \equiv P^2 = -$
 $N = N = A + A = R/P_{im}^{U_{im}}$.$$

$$\frac{(\text{Laivn: dim_{R/P}} P^{i}/p^{i+1} = 1 \text{ (general fact for Dedekind domains)}}{P_{red}: \text{Let } X \in P^{i} \setminus P^{i+1} \text{ Let } J := (X) + P^{i+1}, \text{ Then } P^{i+1} \notin J \in P^{i}}$$

$$\Rightarrow P = P^{-i} P^{i+1} \notin P^{-i} J \Rightarrow P^{-i} J = R \text{ since } P \text{ maximal } \Rightarrow J = P^{i}}$$

$$\Rightarrow X \text{ spans } P^{i}/p^{i+1}.$$

$$\Box$$
So, $P^{i}/p^{i+1} \sim R/p \text{ as } R/p \text{ -vector spaces, hence}$

$$N(P^{L}) = [R:P^{L}] = [R:P][P:P^{L}] \cdots [P^{L-1}:P^{L}] = [R/P]^{L} = N(P)^{L}.$$

Multiplicativity allows us to extend the ideal norm to a group morphism $N: \mathbb{T}_R \longrightarrow \mathbb{R}_+^*$