Lemma 8.34
If Pespeck, the PS = S.
Proof: Can assume P=0. Since P=P², there is
$$\pi \in P | P^a$$
. The $(\pi) = P \Rightarrow P | Ci)$
 $\Rightarrow (\pi) = PI$ for an idea I with $P kT \Rightarrow P + I = R$ is maximality of P
Can write $A = b + r$ for one $b \in P$, $r \in I \Rightarrow r \neq P$ and $rP = IP = (\pi)$.
If $PS = S$, then $rS = RS \in \pi S \Rightarrow r = \pi x$ for some $x \in S$. Since $x = \frac{1}{\pi} \in Q(R) = K$.
So $x \in S$ in $K = R$ (Lemma 8.33) $\Rightarrow r = \pi x \in P i$ D
Corollary 8.35
If Pospeck, then
 $PS = \prod_{i=1}^{r} Q_i^{e_i}$
For unique prime ideals $Q_i \in Spec S$, unique $r > O$ and $e_i > O$.
By Lemma 8.22 the Q_i are precisely the prime ideals (ying over P.
In porticular, over each prime ideal of P there is a prime ideal of S,
and there are only finitely way such prime ideals.
The picture is
 $Spec R$ $Q_i R$ p
This picture is actually true for any finite rig extension. Bud in general, we
Can't say much about how many prime are lying our a prime and how "isj" they
Gre. For Dediction down in the prime is a calculated in the species of the second of the

 \bigcirc

not all
$$\overline{a_i} = 0$$
. Contradiction to $\overline{\omega_s}_{-}, \overline{\omega_m}$ being a basis. Hence, ω_{-}, ω_m are
linearly independent over K.
Still read to show that ω_{-}, ω_m span L. bet $\mathcal{M} := \mathbb{R} \cdot S \omega_{-}, \omega_m \mathbb{I}$ and $\mathcal{N} := S/\mathcal{M}$
as $\mathbb{R} \cdot \mathsf{module}$. We have $\mathcal{M}/\mathcal{P} = \mathbb{R}/\mathcal{P}, S \omega_{-}, \omega_m \mathbb{I} = S/\mathcal{P}S$, hence $S = \mathcal{M} + \mathcal{P}S$,
bence

$$\mathcal{N} = S/\mathcal{M} = \frac{PS}{\mathcal{M}} = \frac{PS}{\mathcal{M}} = \frac{PN}{\mathcal{M}}$$

Since S is a finitely senerated R-module, so is N. Let x₁, x_s be a generating system. The N=PN implies

$$X_i = \sum_{j} \alpha_{ij} \alpha_j$$
 for some $\alpha_{ij} \in P$.

Let
$$A_{i=}(a_{ij})-1_s \implies A_{i}(x_{A_{i}},..,x_{s})^{t}=0$$

$$\implies 0 = ad_{j}(A)A_{i}(x_{A_{i}},..,x_{s})^{t} = d(x_{A_{i}},..,x_{s})^{t}, d:=det(A)$$

$$\implies dN = 0 \implies dS = M = R \cdot \{\omega_{A_{i}},..,\omega_{m}\}.$$

Since
$$a_{ij} \in P \forall_{ij} \Rightarrow det(A \mod P) = (-1)^{s} \neq 0 \Rightarrow det(A) \neq 0$$

$$\Rightarrow S = R \cdot \{\frac{\omega_{n}}{d}, -, \frac{\omega_{m}}{d}\} \Rightarrow L = K \cdot \{\omega_{n}, -, \omega_{m}\}.$$

We have now proven that dink \$PS = N.

Second part: Need to show that
$$\dim_k S/Q_i^{e_i} = e_i t_i$$
. We have a chain $S/Q_i^{e_i} \neq Q_i^{i}/Q_i^{e_i} \neq Q_i^{i}/Q_i^{e_i} \neq \dots \neq Q_i^{e_{i-1}}/Q_i \neq 0$
of R/p-vector spaces. In the proof of Prop 8.24 we have shown that $\dim_{S/Q_i} Q_i^{i_i} = 1 K_i$

Hence,

$$dim_k S/Q_i^{e_i} = e_i \cdot dim_k S/Q_i = e_i \cdot f_i.$$

Observe: the smaller the inertia degree, the more P splits into different primes. We introduce some terminology to describe how P splits in S.

Now consider the care where R=K is a field. Any k-algebra morphism

4:
$$A \rightarrow K$$
 defines a prime ideal $P_{\psi} = \psi^{-1}(0)$ of A with
 $Q(A/P_{\psi}) \longrightarrow K$
field a backow,
 $d \neq NP_{\psi}$
Different morphisms $(\psi: A \rightarrow K)$, $(\psi': A' \rightarrow K')$ can define the same prime ideal,
newely if there is a dissean
 K'
 K
 K
 K'
 K
 K'
 K
 K'
 K
 K'
 K'