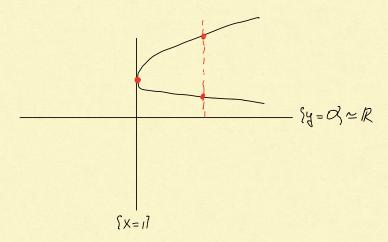
Lecture 22 (22.1.) Consider $f := (Y-2)^2 - (X-1) \in \mathbb{R}[X, Y]$. Picture of $Z_{f}(\mathbb{R})$:



Over each $a \ge 1$ there are precisely two distinct points, namely $(q, 2 \pm \sqrt{a-1})$ and $(q, 2 \pm \sqrt{a-1})$. These two points correspond to the prime ideals $M_{q\pm} := (X-q, Y-2 \pm \sqrt{a-1}) \in \text{Spec A}$

These are precisely the primes over

$$(X-a) \in \text{SpecR[k]}$$

=> $(X-a)$ unramified in A, $(X-a) = M_{a+} \cdot M_{a-}$ in A

(D

But for
$$a = 1$$
, there is only one point, namely $(1, 2)$. The corresponding prime is $M_1 := (X - 1, Y - 2),$

$$\Rightarrow$$
 (X-1) ramified in A, (X-1) = M_1^2 .

1.

~

$$\frac{Def 8.39}{The conductor of REOJ in S is}$$
$$F := F_{SIREOJ} := \{ x \in S \mid x S \in REOJ \}.$$

Lemma 8.40
F is an ideal in both R[G] and S. It is the largest ideal with this
property. Moreover,
$$F \neq 0$$
.
Proof: If $\alpha \in F$ then $\alpha = \alpha \cdot 1 \in REDJ$ by definition, so $F \subseteq REDJ$.
If $\alpha, \beta \in F$, clearly $(\alpha + \beta)S \subseteq \alpha S + \beta S \subseteq REDJ$. If $\alpha \in F$ and $\beta \in S$, then
 $\beta \propto S = \alpha \beta S \subseteq \alpha S \subseteq REDJ \implies \beta \propto c F = \Im F$ ideal.

Recall that S is a finitely generated R-module, so
$$S = R \cdot S \ll_{n,m} \ll_n^3$$
.
Since $L = K(\Theta)$, we can write $\alpha_i = \sum \frac{r_{ij}}{r_{ij}} \Theta^j$ for some $r_{ij} \in R$, $r_{ij} \in R \setminus SO$?
Let $r := \prod_{ij} r_{ij} \in R \setminus SO$?. Then $r \ll_i \in R[O]$ for $\Rightarrow r S \in R[O] \Rightarrow r \in F$.

Remark 8.41
In the number field case, we have [S: REDS] E.F.
Let
$$\mu \in REX$$
] be the minimal polynomial of $\Theta \in S$ over R .
This 8.42 (Dedikind)
Let $O \neq P \in SpecR$ be such that PS is coprime to the conductor $F = \overline{F_{SIREOS}}$
Let
 $\overline{\mu} = \overline{\mu}_{A}^{c} \cdots \overline{\mu}_{r}^{c}$
be the factorization of μ over $R/p[X]$ into pairwise coprime irreducisfer $\overline{\mu}_{i}$.
Let $\mu_{i} \in R[X]$ be a monic representative of μ_{i} . Then the ideals
 $Q_{L} := (P, \mu_{i}(\Theta))_{S}$ (ideal in S senerated by P and $\mu_{i}(\Theta)$)
are precisely the prime ideals of S lying over P. Their inestia degrees
Give

$$f_i(P) = deg p_i$$

and

$$PS = Q_{n}^{e_{n}} \cdots Q_{r}^{e_{r}}$$

is the factorization.

Proof:

Since prime ideals in Soves P = prime ideas in S/PS, we can transfer the problem to S/RS. Set R' = REOJ and R = R/P. We have the following situation

$$S \longrightarrow S/PS$$

$$I \qquad I$$

$$R'=R[0] \longrightarrow R'/PR'$$

$$I \qquad I$$

$$R \longrightarrow R/P$$

We will show that we have canonical isomorphisms

S/PS ~ R'/PR, ~ R[X]/(p) The latter ring is easy to understand. The first isomorphism needs the coprime.

assumption: we have
$$PS + F = S$$
. Since $F \in R^1 \in S \Rightarrow PS + R^1 = S$
 $\Rightarrow R^1 \rightarrow S/PS$ is surjective. The hered is $R^1 nPS$.
We show that $R^1 nPS = PR^1$.
Since PS coprime to $F \Rightarrow P$ coprime to $F nR$ (would otherwise get a divisor in S)
 $\Rightarrow P+ (FnR) = R \Rightarrow PR^1 + F = R^1$
 $\Rightarrow R^1 nPS = (PR^1 + F)(R^1 nPS) \cong PR^1(R^1 nPS) + F(R^1 nPS)$
 $= PR^1 + FPS \cong PR^1 + PFS \cong PR^1 + PR^1 \subseteq PR^1$
The second isomorphism comes from the surjective morphism $R[X] \rightarrow \overline{R[X]}/(\overline{p})$.
The kernel is (P, p) . Since $R^1 = R[G] \cong R[X]/(p)$, it follows that
 $R'/PR^1 \cong R[X]/(P, p) \cong \overline{R[X]}/(p)$.
Constined, we have an isomorphism $S/PS \cong \overline{R[X]}/(\overline{p})$. The inverse is
given explicitly by $\overline{g} \mapsto g(G) \mod PS$.
Let's look at $\overline{R[X]}/(\overline{p})$. From Chinese Remainder Theorem we get
 $A:= \overline{R[X]}/(\overline{p}) = \overline{R[X]}/(\frac{\pi}{L_{p}}P_{L_{p}}) \cong \prod_{i=1}^{R[X]}/(\overline{P_{L}})^{e_{i}}$.

Easy observations:

1. The prime ideals in A. are the principal ideals
$$(\overline{p_i})$$

2. $[\overline{A}/(\overline{p_i}): \overline{R}] = deg \overline{p_i}$
3. $(o) = (\overline{p}) = \bigcap_{i=1}^{n} (\overline{p_i})^{e_i}$.
4. $\sum_{i=1}^{r} deg \overline{p_i} \cdot e_i = dim_{\overline{R}} A$, moreover $dim_{\overline{R}} A = deg p = n$ (p monic)
Now, bransfs this to $\overline{S} := S/p_S$ using the isomorphism $\overline{g} \mapsto g(\Theta) \mod PS$.
1. The prime ideals in \overline{S} are the ideals $\overline{Q_i} := (p_i(\Theta) \mod PS)$
2. $[\overline{S}/\overline{Q_i}: \overline{R}] = deg \overline{p_i}$
3. $(o) = \bigcap_{i=1}^{n} \overline{Q_i}^{e_i}$

Transles to S by taking preimages:
1. The prime ideals in S over P are precisely the ideals
$$Q_i := (P, P_i(Q))_S$$

2. $f_i = [S/Q_i : R/P] = deg \overline{P_i}$
3. $PS = \bigcap_{i=1}^{n} Q_i^{e_i} = \prod_{i=1}^{n} Q_i^{e_i} = PS$ divides $\prod_{i=1}^{r} Q_i^{e_i}$
Since we have $\sum_{i=1}^{r} e_i f_i = n$ by 4 above, we must have $PS = \prod_{i=1}^{r} Q_i^{e_i}$.