Lecture 25 (3.2.)
8.7 (Un)ravisived primes
Here is an imposed corollary of Thin 8.42.
Thin 8.45
Let
$$d := d(1, \theta, ..., 0^{n-1})$$
 be the discriminant of the basis $1, \theta, ..., 0^{n-1}$ of L .
Then all Pespee R which an coprime to d and to F are unramified in S.
In particular, only finitely many P are rown field in S.
Proof:
Recall from Cor 5.12 that $d = \pm \operatorname{Res}(P, P')$. Let $\overline{p} := p \operatorname{Imal} P$. Then
 $\overline{d} = \operatorname{Res}(P, P) = \operatorname{Res}(\overline{p}, \overline{p})$. Since $d \not\in P$, $\overline{d} \neq 0$, so $\operatorname{Rer}(\overline{p}, \overline{p}) \neq 0$
By Lemma 6.9 this means that \overline{p} , \overline{p} have no common root, so
the factorization of \overline{p} is $\overline{p} = \overline{p} - \overline{p}_r$, all \overline{p}_r coprime. Since P is
coprime to \overline{F} , Thun 8.42 implies that $e_i = 1$ br. Moreover, \overline{p} , $\overline{p}r$ ho
common root means that \overline{p} is repeated. If Q_i is a prime over P , the
extension $R/p \in S/Q_i$ is generated by Θ mod Q_i . The minimal
polynomial of Θ mod Q_i divides \overline{p} , bunce it is separately hence
 $R/p \in S/Q_i$: In separable. In total: P unramified. D
Neverth 8.46
One can show that the ramified P are precisely the divisor of the
 $d_{SC}pinine-1$ ideal
 $d_{SR} = ideal of S$ generated by all K-bases of L contoined in S.

)

8.8 Galoris theory of primes As before: R Dedekind domain with traction field K. Asseme now that KEL in a finite <u>Galors</u> extension. Let S = R^{int,L}, G:=Galk(L). <u>Note:</u> if a.e.S, then also o(a) ES HoreG => Gacts on S. This is an action by ring automorphisms, so if QES is a prime ideal, so is O(Q).

$$PS = \left(\prod_{\sigma \in G/G_Q} e^{\sigma} \right), \qquad (3)$$

where Q is an anistrary prime over P. Proof: let Q1,..., Q, be the primes above P. Sed Q:=Q1. By Lemma 8.48 we can find for ead i a ofeq with Q:= 5; Q. Since of is a my tomorphism S-S, it follows that S/Q ~ S/s;Q, hence $f:=\left[S/Q: : R/p\right] = \left[S/Q: R/p\right] = : f f'$ Moreove, since 5; (PS) = PS Hi, we have $Q^{\nu}|PS \iff \sigma_{i}(Q^{\nu})|PS \iff (\sigma_{i}Q)^{\nu}|PS,$ hence ei=e,=, e Vi. The claim in b) is now clear. \Box

Def 8.5]
The fixed field
$$L^{G_Q} = \int x_G L | G x = x \forall x \in G_Q \}$$

is called the decomposition field of Q (over R).

5

$$\frac{\text{Lemma 8,52}}{S^{\text{GQ}}}$$

$$\frac{S^{\text{GQ}}}{S^{\text{GQ}}}$$
is the integral closure of R in L^{GQ} and this is a Dedekind domain.

$$\frac{Proof}{S}$$
Follows from $S = R^{\text{Int;L}}$ and from the several Lemma 8.31.

of Q are
$$Q^{G_{Q}}$$

c) The rainification indices and inertia descess of $Q^{G_{Q}}$ are organized to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$)
 $equal to I (i.e. P totally split in $R \circ S^{G_{Q}}$
 $are of Q for $S \circ G_{Q}$. Hence, by Lemma 4.50, the primes are $Q^{G_{Q}}$
 $are of Q for $S \circ G_{Q}$. Hence, they are all equation (Re Thin 9.37) reads
 $n = efr$,
where
 $n = efr$,
 $shere$
 $n = drimple = IGI$
 $e = rain index of Q over P$
 $r = ik of prime in S over P = [G: G_{Q}]$.
 $iequal to Q over P$
 $r = ik of prime in S over P = [G: G_{Q}]$.
 $iequal to I (i.e. S^{G_{Q}}) = I_{G_{Q}}| = ef$
 $let e' rang e'' is the rain index of Q in $S^{G_{Q}} \in S$ range of
 $Q^{G_{Q}}$ in $R \circ S^{G_{Q}}$. Thue $PS^{G_{Q}} = (Q^{G_{Q}})^{e''}$, powers of other primes.
Since Q is the only prime over $Q^{G_{Q}}$ by a), if follows that $Q^{G_{Q}} S = Q^{e'}$.$$$$$$$$$$$$$$

Hence,
$$PS = Q^{e'e''}$$
, powers of other primes

$$\Rightarrow e = e'e''.$$
If f' verp f'' denotes the inset deg of Q in $S^{G_{Q}} \subset S$ resp
of $Q^{G_{Q}}$ in $R \subset S^{G_{Q}}$, then dearly
 $f = [S/Q: R/P] = [S/Q: S^{G_{Q}}/Q^{G_{Q}}] \cdot [S^{G_{Q}}/Q^{G_{Q}}: R/P] = f'f''.$
The fundamental equation for the decomposition of $Q^{G_{Q}}$ in $S^{G_{Q}} \subset S$
is $[L: L^{G_{Q}}] = e'f'$. Hence, $ef = e'f' = e = e', f = f', e'' = 1 = f''.$