Moreover,
$$Gal_{L^{TQ}}(L) = T_{Q} L_{g} Galois theory.$$

b) Since $k(P) = k(Q)$ is normal by Prop P.54 and separable by assumption,
if is Galoss. Hence
 $f = [S/Q: R/P] = |Gal_{k(P)}(k(Q))| = [G_Q \cdot T_Q]$

We have

$$|G| = [L:K] = e \cdot f \cdot [G:G_q] = e [G_q : I_q][G:G_q] = e [G:I_q]$$

=> $|I_q| = e$,

61+52) Consider L^{Ice} CL. By Prop 8.54 we have

$$G_{al}(L)_{Q} \longrightarrow G_{al}(k(Q^{T_{Q}}))$$
By above, $G_{al}(L)_{L}(Q^{T_{Q}})$ But this is the kernel of
$$G_{Q} \longrightarrow G_{al}(p)(k(Q)).$$
Hence, the above map sends encything to 1
As it is surjective, we conclude $G_{al}(Q^{T_{Q}})(k(Q)) = 1$

$$\Rightarrow k(Q^{T_{Q}}) = k(Q).$$

$$\Rightarrow inertic degree of Q in S^{T_{Q}} c S is 1.$$
The claims now follow from the fundamental equation and Prop 8.53.

8.9 Ramification in quadratic extensions
Let
$$d \neq 0,1$$
 be square-free and let $L = O(Vd)$. Using Dedekind's Theorem 8.42
we can completely describe how prive numbers before in G_2 .
Since $n = [L:O] = 2$, only three cases can occur by the fundamental
equation:
a) p is (totally) split: $r = 2$, $e = f = 1$
b) p is inert: $r = 1$, $e = 1$, $f = 2$
c) p is (totally) ramified: $r = 1$, $e = 2$, $f = 1$

 \Box

Let's see when which case hoppens. Let
$$\Theta := \sqrt{d}$$
.
Recall from Exercise 2.4 that $6_{L} = \overline{L}[\alpha J]$, where
 $\chi = \begin{cases} \alpha & \text{if } d \equiv 2,3 \mod 4 \\ \frac{1+\Theta}{2} & \text{if } d \equiv 1 \mod 4 \end{cases}$

$$d_{G_L} = \begin{cases} 4d & \text{if } d \equiv 2,3 \mod 4 \\ d & \text{if } d \equiv 1 \mod 4 \end{cases}$$

- 1

$$\frac{De\{9,57\}}{The Legendre symbol for a \in \mathbb{N} \text{ and an odd prime is}}$$

$$\left(\frac{\alpha}{P}\right) := \begin{cases} 1 & \text{if there is } X \text{ with } X^2 \equiv \alpha \mod p \text{ and } p \text{ ta} \\ -1 & \text{if there is no such } X \end{cases}$$

$$O & \text{if } p \text{ ta}$$

 (\mathfrak{P})

P is
$$\begin{cases} ramified \\ lnest \\ split \\ \end{cases}$$
 $d \equiv 2, 3 \mod 4$
 $d \equiv 5 \mod 8$
 $d \equiv 1 \mod 8$

Proof: Let p be odd. Note that [G_: d_Z[G]] = {2 if d = 1 mod 4.

Since p odd, we thus have
$$p \in [G_{L}: d_{PEOS}]$$
 and we can apply (3)
This 8.42. The minimal poly of 0 is $\gamma = \chi^{2} - d$ and the claim
follows immediatly.
Now let $p=2$.
Suppose $d=2,3 \mod 4$. Then $[G_{L}:\mathbb{Z}_{EOS}]=1$, is we can apply The 9.42.
We have $d=0,1 \mod 2$, so
 $p \equiv \chi^{2} \mod 2$ or $p \equiv \chi^{2} + (\equiv (\chi + 1)^{2} \mod 2)$
Hence, 2 is ranified.
Suppose $d=1 \mod 4$. Since $[G_{L}: d_{\mathbb{Z}[OS]}]=2$, caunot apply The 9.42
with 0 . We a instead. The minimal polynomial of a is
 $p \equiv \chi^{2} - \chi + \frac{1-d}{4}$.
If $d \equiv 1 \mod 8$, this factors as $\chi^{2} + \chi = \chi(\chi + 1) \mod 2$, so
2 is splith 18 $d \equiv 5 \mod 8$ then $p \equiv \chi^{2} + \chi + 1 \mod 2$, which is
irreducible, hence 2 is inerte.