Lecture 27 (10.2.)

7

Re

Λ

8.10 Ramification in cyclotonic fields
Let S & a primitive n-th root of unity and let L = Q(S).
Recall from Exercise 3.5 and 5.4 that
• the minimal polynomial of g is
$$\phi_n = T(X - g)$$
 (cyclotomic polynomial)
 g_{prim}
• $dim_Q L = U(n)$ (Euler Q)
• $G_L = \overline{Z}[Q]$ (we just proved this for n a prime power but also true
in general).

Then 8.58
Let
$$n = \pi_p p^{\mu_r}$$
 be the prime Eactorization of n. For every prime number p let f_p
be the multiplicative order of p modulo $n/p\nu_p$ ($p^{4_p} = 1 \mod n/p^{\mu_p}$ and f_p smalled)
Then p factorizes in G_2 as $(P_1 - P_r)^{le(p^{\mu_r})}$ where the P_i are distinct
and all having inertia degree f_p .

Proof: Since G_L = T[9], we have F_{GL/T[9]} = 1, so we can apply Thm S. 42 for every p. Hence, we need to show that

where the pi are distinct inducible polynomials over Z/pZ of degree for Write n=pupern. If E: rep 2; runs through the distinct primitive moth resp ptr-12 roots of unity, then E: 2; runs through the primitive noth roots of unity lence

$$\Phi_n = \prod_{i,j} (X - \xi_i \mathcal{X}_j)$$

$$(x - \xi_i \mathcal{X}_j)$$

$$(x - \xi_i \mathcal{X}_j)$$

$$(x - \xi_i \mathcal{X}_j)$$

$$(x - \xi_i)$$

for any QESPECE (gins above p.

$$\Rightarrow \quad Q_n = \prod (X - g_i)^{e(p^n)} = \phi_m^{e(p^n)} \mod Q$$

$$\Rightarrow \quad \varphi_n = \phi_m^{e(p^n)} \mod p$$
Moreover, by definition, by is the nultriplicative order of p and Np4 = m.

$$\Rightarrow \quad \varphi_n = \phi_m^{e(p^n)} \mod p$$
Moreover, by definition, by is the nultriplicative order of p and Np4 = m.

$$\Rightarrow \quad \varphi_n = \phi_m^{e(p^n)} \mod p$$
Moreover, by definition, by is the nultriplicative order of p and Np4 = m.

$$\Rightarrow \quad \varphi_n = \phi_m^{e(p^n)} \mod p$$
Moreover, by definition, by is the nultriplicative order of p and Np4 = m.

$$\Rightarrow \quad \chi^n - 1 \text{ is non-zero in } 6_{1/Q} (it has characteristic p).$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ is separable over } G_{1/Q}, i.e. it has no nultriple rooks$$

$$\Rightarrow \quad \chi^n - 1 \text{ root } \mathcal{G} = \int_{1/Q} \int_{$$

Corollary 8.59
If p is an odd prime, then in GL, p is
a) ramified iff
$$n=0 \mod p$$

b) totally split iff $p=1 \mod p$.

<u>8.11 Quadratic reciprocity</u> The splitting of primes in quadratic exknsions and in cyclotonia exknsions is linked. This will explain the quadratic reciprocity Law.

The 8.60
Let l be an odd prime. Let
$$l^{*}:=(-1)^{\frac{p-1}{2}}l$$
 and let S be a primitive leth
root of unity. Then for an odd prime p the following are equivalent:
a) p is totally split in $O(\sqrt{d^{*}})$ (\Leftrightarrow $(\frac{e^{*}}{p})=1$)
b) p splits in $O(S)$ into an even number of primes.
Proof:
It's not hard to see that $l^{*}=\tau^{2}$ where $\tau := \sum_{\alpha \in \mathbb{Z}/T} (\frac{\alpha}{l})S^{\alpha}$ (Georgia).
 $ac(\mathbb{Z}/e\mathbb{Z})^{*}$
Iknce, $O(\sqrt{e^{*}}) = O(S)$.
If p is totally split in $O(\sqrt{e^{*}})$, the $p = P_{1}P_{2}$, $P_{1} \exp(G_{O}(\sqrt{e^{*}}))$.
The there is $\sigma \in Gal(O(\sqrt{e^{*}})$ mapping P_{1} to P_{2} , hence there is $S \in Gal(O(\mathbb{Q}))$
Image over P.
Suppose conversely that the number r of primes in $O(S)$ over p is even.
By App 8.53, $r = [G_{1}:G_{Q}] = [O(S)^{G_{Q}}:Q]$, where $G_{1}:Ga(Q(Q(S)))$ and Q
is a prime dove p . Since G is cycle, there is a unique subgroup for every divisor of G_{1} .

3

hence
$$Q(\xi)^{GQ}$$
 contain the unique desires - 2 extension, which is $Q(\sqrt{e^2})$. (7)
By Dop 8.53, the inertia desires of Q^{GQ} ow p is
equal to 1, hence the inertia degree of Q n $\mathbb{Z}_{Q(\sqrt{e^2})}$ of p is equal to 1
 \Rightarrow p totally split in $Q(\sqrt{e^2})$.

The 8.61 (Quadsatic reciprocity)
For odd primes L and p:
$$\left(\frac{l}{p}\right)\left(\frac{p}{l}\right) = (-1)^{\frac{p-1}{2}}$$

Proof:
Let
$$l^{*} = (-1)^{\frac{p-1}{2}} l$$
 as above. We first show that $\left(\frac{p^{*}}{p}\right) = \left(\frac{p}{l}\right)$.
By This 8.58, p splits in $O(l_{e})$ into $r = \frac{l-1}{4}$ primes, where l is the
multiplicative order of p mod l . By This 8.60, we have $\left(\frac{p^{*}}{p}\right) = 1$ iff r is every.
By above, r is even iff 1 divides $\frac{l-1}{2}$. Since l is the multiplicative order of
 p mod l , this holds iff $p\frac{l-1}{2} = (mod l. The scoup \mathbb{F}_{e}^{*} is cycles, and
elements of order dividing $\frac{l-1}{2}$ are precisely those which are squares.
In total: $\left(\frac{p^{*}}{p}\right) = 1$ iff $\left(\frac{p}{l}\right) = 1$. Hence: $\left(\frac{p}{p}\right) = \left(\frac{p}{l}\right)$.$

It is easy to see that
$$\left(\frac{-1}{p}\right) = \left(-1\right)^{\frac{p-1}{2}}$$
 (Exscise). Hence:
 $\left(\frac{p}{\ell}\right) = \left(\frac{\ell^*}{p}\right) = \left(\frac{-1}{p}\right)^{\frac{p-1}{2}} \left(\frac{\ell}{p}\right) = \left(\frac{\ell}{p}\right) \left(-1\right)^{\frac{p-1}{2}} \frac{\ell-1}{2}$.