$$\frac{|ecdure 4, 6||.}{|ecdure 2,42} \quad \text{If } W = 2 \text{ is separable and has a satisfy the form}$$

$$1,0,...,0^{n-1} \quad (e.s. if L = W(D)), \text{ then}$$

$$d_{UK}(1,0)...,0^{n-1}) = \boxed{||} \quad (O_i - O_j)^2 \neq 0,$$

$$i \leq j$$
where $O_i = \sigma_i(D) \text{ and } \sigma_i \text{ are the } W - morphisms L \rightarrow -2, \quad D = K \text{ classically closed.}$

$$\overrightarrow{Prood:} \quad d_{UK}(1,0,...,0^{n-1}) = det \left((\sigma_i(6))^2 \right)^2$$

$$= det \left((O_i)^3 \right)^2$$

$$Vendermonele = \prod_{i < j} (U_i - O_j)^2$$

$$= \prod_{i < j} (U_i - O_j)^2$$

Cor 2.43 The brace form of a finite separable extension is always Non-degenerate.

Proof: L=K(0) by primitive element theorem.

Đ

3. Ring of integers

3.1 Integral elements Motivation. Since QCQ(i) is finite, it is algebraic, hence ever acQ(i) is a root of a monic polynomial & @ REA. How can be chasactuize TI[i] = (W(i)? Lemma 3.1 ZEi] consists precisely of the elements as (Q(i) which are a root of a monic polynomial & CZEXJ. Proof: Let x = atsie I[i], i.e. a, be I. Then f is a root of $\overline{Z[X]} \ge f = X^2 + cX + d, c = -2a, d = a^2 + b^2$ Conversely let x = a+SiE (O(i) and f(x)=0 for some f E Z[X]. It follows from Gauss's Lemma that every mone tector of f in OEX also lies ~ TIEX] => p, c TIEX] V_{α} is of descere $\leq 2 = \dim_{\mathbb{Q}} Q(i)$. If $\deg V_{\alpha} = 1 =) \alpha = \alpha \in \mathbb{Z}$. If deg P2=2, the P2=X2+CX+d, c, de Z. $p(x) = 0 \Rightarrow (a+ib)^2 + c(a+ib) + d = 0$ =) $(a^2-b^2+ca+d) + (2ab+bc)i = 0$ =1 a2-b2+ catd = 0 and 2abtbc = 0 <=-2a d= a2+54 $\int (2a+c) = 0$ $\Rightarrow 4d = 4a^{2} + 4b^{2} = (2a)^{2} + (2b)^{2}$ GZ If b= O=>xGRY 505=0=) c=-2a=)2a=Z ≈ (26)2 € Z => 26 € (6 € Q) Now, (2a2)+(26)2 = 4d = 0 mod 4 => (2a)2 = (26)2 = 0 mod 4 =) $4a^2 = 4n = 2a^2 = n = 2ac Z (cc 0).$ D

2

This briggs us to the following definition:

$$\frac{2k_{1}^{32}}{2k_{1}^{32}}$$
Let $R \in S$ be an extension of Prings, the elevent wes is integral
ous R if $f(x)^{n}$ for some manic ferris. The integral descree of R
in S is
 $R^{int,S} := \int x \in S \mid x \text{ integral over } R_{1}^{2}$.
The extension $R \in S$ is integral if each $x \in S$ is integral over R_{1} .
The extension $R \in S$ is integral if each $x \in S$ is integral over R_{1} .
The extension $R \in S$ is integral if each $x \in S$ is integral over R_{1} .
 $Example:$
a) $K \in L$ a field extension. The integral C is also brave
 S every R is integral over R_{1} so $R \in R^{14}$.
c) $Z^{int,O} = Z$ by Gauss Lemma.
d) $Z^{int,O(i)} = Z[i]$ by Lemma 3.1.
e) B_{1} careful! $\frac{1+\sqrt{5}}{2} \in O(\sqrt{5})$ is integral over Z : if is a
 $Z = X^{2} - X + I \in Z[X]$
 $\left(\frac{1+\sqrt{5}}{2}\right)^{L} - \left(\frac{1+\sqrt{5}}{2}\right) + I = \frac{1+2\sqrt{5}+5}{4} - \frac{2+2\sqrt{5}}{4} + \frac{4}{4}$
 $= -\frac{4}{4} + \frac{4}{4} = 0.$

It is thus not so obvious how Rint, S looks like. Let's prove some general facts. We will shortly see that Rint, S is a ring. It's best to view this in terms of modules.

Y Y Y Y Y Y WARNING N° 1 YYYY
Submodules of fig modules do not how to be finitely senerated!

$$E_{X_{1}}^{3, \mu}$$

Let $R := KIX_{1}, X_{2}, X_{3}, ..., J$ infinitely many variables
Then R is a fig R -module by E_{X} 3.10
BUT: $I = (X_{1}, X_{2}, X_{3}, ...) \in R$ is an ideal which is not
finitely genesated!
 $Od_{i}^{3, \mu}A_{R} - algebra is a ning A which is also an A-module
such that
 $r(aa^{i}) = (ra)a^{i} = a(ra^{i}) \quad kreR, a, a'eA.$
 $I_{R}a = a = a \cdot I_{R}.$$

15x: a) The polynomial n'ry RTXJ is an R-algebra b) R=S a n'ny extension ~ S is an R-algebra.

Sec: S' = S[x],
C-101: S' = R{tun, n, units, uses
Since
$$\alpha \in S'$$
 and $S' = n ty = (a) duits (S' trissing $\alpha \in S'$ and $S' = n ty = (a)$ the since $\alpha \in S' = R[u_{n,n}, \alpha_n]$ here
 $\alpha \in S' = R[u_{n,n}, \alpha_n]$ here
 $\alpha \in S' = R[u_{n,n}, \alpha_n] = n ty = (a) \in (S')^n$
Consider S' as an R[X]-module with X acting by multipleaden
by u_i , so $X := \alpha : \dots : Xv = (u_{n,n}) \in (u_{n,n})$.
Then $(X \cdot I_n - M)v = O$
mather over R[X]
Multiply with the alignesh metrix as $det(XI_n - M) \cdot v = O$
 $=: f \in R[X]$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad ti$
 $n : f \cdot \alpha_i = O \quad f \cdot A = \sum r_i : A^i$
 $n : f \cdot \alpha_i = R[u_{n,n} : u_{n,n}]$. By induction $n : n = 1 \quad tr$ there $3!Q$.
 $n : f \cdot det of i : R[u_{n,n} : u_{n,n}]$. By induction, $f \cdot S \cdot R$ -modul.
 $n : det n : f : R = R[u_{n,n} : u_{n,n}]$. By induction, $f \cdot S \cdot R$ -modul.
 $n : det n : f : R = n : f \cdot f \cdot R[u_{n,n}]$. By induction, $f \cdot S \cdot R$ -modul.$

Def 3.22 If L is a number field, then $G_L := \mathbb{Z}^{int,L}$ is called the ring of integers in L.