~

$$\begin{split} \frac{1}{2} \frac{$$

and: Let V':=
$$\sum_{i \in \Sigma} V_i$$
, a submitted of V.
By assumption, V is knikly generated, so V=R-l'Kny, Vil
m There is N such that YeV, Vj
m Vi=Vili, Vi=N.
Lonce V & S. U V, not maximal in S, there is V & S. Vi S.V.
(I V2 not maximal in m according char
m become stationary, my at V
m V is a maximal element.
Constained a maximal element.
Constained a maximal element.
Constained a maximal element U.
U = R.S.V., VS. If U #U m 3 YE U.
U': a Some OCS
M S contains a maximal element U.
U': S. S. If U': tu m 3 YE U.
U': a View U.
U': a View U.
U': a view of U.
Storman is a submodule of V, the:
a) the abelies group V/U is naturally an R-module with r.V:= T.V.
B Submodules of V containing U? (1) S submodules of V/US.
Proof: B clear.

Since
$$\alpha_{i}$$
, $\alpha_{i} \in S \to \alpha_{i}$; cS ,
 $n = Tr_{LK}(\alpha_{K_{i}}) \in R$ by $Cor = 3.34$.
Hence
 $R \ni Tr_{LK}(\alpha_{K_{i}}) = Tr_{LK}\left(\sum_{j=1}^{n} \beta_{j} \alpha_{j}^{k} \alpha_{j}\right) = \sum_{j=1}^{n} \beta_{j} S_{ij} = \beta_{j}$
 $\Rightarrow S \subseteq R \cdot S \alpha_{j}^{k} \dots \alpha_{n}^{k} T \rightarrow S$ subradule of a f.s. R -module
 $n \le S$ is R -module since R notherian.
By Hiself, Basis Theorem: S is notherian.
 B_{i} Hiself, Basis Theorem: S is notherian.
 $Corollary: Every ring of inksels G_{L} is a finitely severated Z -module
and a northerian ring.
 $2.7 Ring of inksels free
Note: $ZI_{i} = Z + Z_{i}$, every element of the for α + S_{i} in H unique $a_{i}bcZ$
 $Eff: left V be an R -module subset $W_{i} \in V$ is linearly independent if whenever
 $\sum_{i \in T} r_{i}V_{i} = O \Rightarrow r_{i} = O t_{i}$
 $A = basis of V$ is a linearly independent generably set.
V is called free if it has a basis
 $Note: V$ free $=$ every veV is of the for 2 riv, with unique $r_{i} \in R$.
 $Ex^{3.50}$
 $a) R$ if set is a free R -module.
 $S = 1S R^{-1} \oplus R = \int (ricis C (ric R_{i}) + rive erg V = R^{-1}) for some T .
 $first readily independent.
 $S = 1S R^{-1} \oplus R = \int (ricis C (ric R_{i}) + rive erg V = R^{-1}) for some T .
 $first readily is a free R -module.
 $first readily readed is the formal M .$$$$$$$$