So, A looks like

Remark: Coefficients desire the computation as get externely large ()
There is an example of a 2020 integer matrix with eachier in 500,103
such that in computation of the HNF integers with up to 1.000 digit:
arize.
There is a modular version of the algorithm which avoids such problems.
Can similarly define HNF using lower biologular matrix,
get thus by advance operations A.U.
Constrining the two, we can produce:
HAP: A = (aij) GMAthan (R). Then there are Use GLm(R), VEGLm(R) such
that
UAV= () Dr O
O D)
where Dr = dig (Sam, Sr) with Si = 0 Vi and Si | Si = 1 Vi. The Si
are uniquely determined and an added the clumentary driveous. The
watrix UAV is called the Smith normal form of A.
Again, we illustrate this by an example.
A =
$$\begin{pmatrix} 4 & 2 & 9 & 5 \\ 8 & 4 & 1 & -1 \end{pmatrix}$$
 () O I O D
 $\begin{pmatrix} 2 & 1 & 0 & 21 \\ 0 & 0 & 56 \end{pmatrix}$ apply $V = \begin{pmatrix} 1 & 0 \\ -21 & 1 \end{pmatrix}$
 $\sim \begin{pmatrix} 2 & 1 & 0 & 21 \\ 0 & 0 & 56 \end{pmatrix}$ $regular (0 - 1 & 0)$
 $\sim 0 & 0 & 56 \end{pmatrix}$

Now, charge coleurs

Can prove funtative theorems with this!
Thun: Let V be a finitely generated R-nordule.
Then
$$V \simeq R^m \oplus \bigoplus_{i=1}^k R/(p_i^m i)$$

for uniquely determined math, prime elements p_i and uniquely determined mich.
Proof:
Let $\{V_{hs}...,V_{h}\}$ is generators of V. Let $e_{hs}...,e_{hs}$ be standard basis
vectors of R^n . Then $\phi: R^m \longrightarrow V$, $e_i \mapsto V_{e_1}$ is a subjective morphism.
 $\sim V \simeq R^m/Ves \phi$
Ves ϕ is a submadule of a free module, thus free by Thm 366 (RPD)
Let $f_{hs}...,f_{ks}$ be a basis of Kes ϕ . Let A be the matrix of $Ver \phi \Longrightarrow R^n$
in the bases. By Thun 4.8, we can change bases so that
 A (Dr O) Drift warred basis

$$A = \begin{pmatrix} Dr & O \\ O & O \end{pmatrix}$$
 Smith normal form

Let $D_r = (S_{13,.7}S_r)$. Then it is immediately dear: $V_{2} \frac{R^n}{Wer} \phi \simeq \frac{R^n}{ImA} = \bigoplus_{j=1}^{n} \frac{R}{(S_j)} \bigoplus_{j=r+1}^{n} \frac{R}{(o)}$ $= \bigoplus_{j=1}^{n} \frac{R}{(S_j)} \bigoplus_{j=r+1}^{n} \frac{R}{(o)}$ Now, write $S_j = P_{j1}^{S_{j1}} - P_{jnj}^{S_{jn}}$ will pairwise distinct prime P_{lk}

Chinese remainder theorem

$$\frac{R}{(s_{i})} \cong \bigoplus_{k=1}^{N} \frac{R}{(p_{ik}^{s_{ik}})}$$
Now sur all these decompositions. Done.

$$\frac{U_{i}}{C_{0i}} Classification of finilely generaled obtion groups (R=Z).$$

$$\frac{U_{i}}{C_{0i}} Classification for the end of the end of finile obtion general finile obtion general for the end of the end of the end of the end of t$$