\bigcirc

Remark 5.22: The proposition is just a special case of the general believer of primes in integral may extensions.

5.6 The round-2 algorithm (theory)
Remember: The goal is to find the p-maximal overoriler Gp for p² | dG.
Generalizing Thim 3.60:
Lemma 5.22:
If
$$0 \neq T \equiv G$$
 is an ideal, then I is a free Z-module of dimension n.
Proof:
G is free of dimension n by definition. Since G noetherian, I is a
(q. Z-module; aliously torsion -free, thus free by Thim 3.66.
Let $\alpha_{A,T}, \alpha_{A}$ be a basis of G. Let $0 \neq x \in T$. The $x \alpha_{A,T}, x \alpha_{A} \in T$.
Then are linearly independent => $dim_{Z} T \equiv n$.
Since $T \subseteq G = \int dim_{Z} T \leq dim_{Z} G = n = \int dim_{Z} T = n$.

Prop 5.24:
Let I = G be an ideal. Then

$$[I/I] := \begin{cases} x \in L \mid xI = I \end{cases}$$

is an order in L containing G. It is called the ring of multipliers of I.
Proof: Since I is an ideal, G = [I/I]. Let $X, \emptyset \in [I/I]$. The $XI = I, \forall I = I$,
hence $X \forall I = I$ and $(X + \forall) I = I = X \forall X + \forall \in [I/I]$.
I is a tree Z-module of rank n by Lemma 5.23.
 $ri N := [G:I]$ is finite. The $N \cdot G = I \longrightarrow N = N \cdot 1 \in I$
Hence,
 $I = I/I = \{ X \in L \mid XI = I \} \in \{ X \in L \mid X \cdot N \in I \} \in \{ X \in L \mid X \cdot N \in G \}$

This implies that [I/I] is a lig. Z-module =) [I/I] is an order []

Corollary 5.26:

$$Mulp(6) := [radp(G)/radp(G)]$$
 is an order containing 6 and
 $[mulp(G):G] = pk$ for some k=n. In particular, $Mulp(6)$ is contained in Gp,
the p-maximal overoider of G. dimol
We call $Mulp(6)$ the p-multiplier of G.

$$\frac{P_{roof}}{xe} = First part from Prop 5.24. For second part note that ifxemulp6, then X.rcdp6 = radp6=6 by definition. Since periodp6=> p.mulp6=6 => mulp6 = $\frac{1}{p}6$.
We have
 $p^{n} = [\frac{1}{p}6:6] = [\frac{1}{p}6:mulp6] \cdot [mulp6:6] => [mulp6:6] divides p^{n}$.$$