Algorithmic Number Theory WS 19/20

Prof. Dr. Ulrich Thiel University of Kaiserslautern

Exercise Sheet 2

Nov 4, 2019

Please tell me in/after the lecture on Monday what you want to have discussed

Exercise 1. Let $f \coloneqq X^3 - 3X - 1 \in \mathbb{Q}[X]$.

- (a) Prove that f is irreducible.
- (b) Let L = K[X]/(f) be the stem field of f over \mathbb{Q} and consider $\beta := X^4 + 2X^3 + 3 \in \mathbb{Q}[X]$ as an element of L. Express β in the standard basis of L and compute its inverse.

Exercise 2. Determine a primitive element for the extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Exercise 3. Let $K \subseteq L \subseteq M$ be finite extensions with $K \subseteq M$ separable. Show that $\operatorname{Tr}_{L|K} \circ \operatorname{Tr}_{M|L} = \operatorname{Tr}_{M|K}$ and $\operatorname{N}_{L|K} \circ \operatorname{N}_{M|L} = \operatorname{N}_{M|K}$.

Exercise 4. Let D be a square-free integer. Show that the ring of integers in $\mathbb{Q}(\sqrt{D})$ is $\mathbb{Z}[\omega]$, where

$$\omega = \begin{cases} \sqrt{D} & \text{if } D \equiv 2,3 \mod 4\\ \frac{1+\sqrt{D}}{2} & \text{if } D \equiv 1 \mod 4 \end{cases}$$

Exercise 5. Let L be the splitting field of $X^8 - 2$ over \mathbb{Q} . Compute the minimal polynomial, characteristic polynomial, norm, and trace of $\alpha \coloneqq \sqrt[8]{2} \in L$.