Algorithmic Number Theory WS 19/20

Exercise Sheet 12

Feb 3, 2020

Exercise 1. Show that in a Galois extension of number fields with noncyclic Galois group, there are at most finitely many nonsplit primes and no inert primes.

Exercise 2. Let $K \subseteq L$ be a Galois extension of number fields. Set $G := \operatorname{Gal}_K(L)$. Let $P \in \operatorname{Spec} \mathcal{O}_K$ be unramified in \mathcal{O}_L .

- (a) Let Q ∈ Spec O_L be a prime over P. Show that there is a unique element σ_Q ∈ G such that σ(x) = x^{#k(P)} mod Q for all x ∈ O_L.
 (b) Instead of σ_Q one often writes (L|K/Q). Show that P is totally split in O_L if
- and only if $\left(\frac{L|K}{Q}\right) = 1$ for one (any) $Q \in \operatorname{Spec} \mathcal{O}_L$ above P.
- (c) Show that σ_Q and $\sigma_{Q'}$ are conjugate in G for any $Q, Q' \in \operatorname{Spec} \mathcal{O}_L$ above P. Hence, if G is abelian, then $\left(\frac{L|K}{Q}\right)$ is independent of Q, and we will simply write $\left(\frac{L|K}{P}\right)$. We thus get a map $\left(\frac{L|K}{P}\right)$: Spec^{ur} $\mathcal{O}_K \to G$.