Algorithmic Number Theory WS 19/20

Prof. Dr. Ulrich Thiel University of Kaiserslautern

Exercise Sheet 7 Dec 9, 2019

Exercise 1. Let *L* be a number field.

(a) For $\lambda \in \mathbb{R}_{>0}$ let

$$E_{\lambda} := \{ x \in \mathbb{R}^{r+2s} \mid |x_1| + \ldots + |x_r| + \sqrt{2}\sqrt{x_{r+1}^2 + x_{r+2}^2} + \ldots + \sqrt{2}\sqrt{x_{r+2s-1}^2 + x_{r+2s}^2} \le \lambda \}$$

- Show that $\operatorname{vol}(E_{\lambda}) = \frac{2^{r} \pi^{s}}{n!} \lambda^{n}$. (b) Show that if $j(\omega) \in E_{\lambda}$, then $\sum_{i=1}^{n} |\sigma_{i}(\omega)| \leq \lambda$ and $|N_{L|\mathbb{Q}}(\omega)| \leq n^{-n} \lambda^{-n}$.¹
- (c) Deduce that for any non-zero ideal I of \mathcal{O}_L there is a non-zero $\omega \in I$ with

$$|N_{L|\mathbb{Q}}(\omega)| \leq M_L[\mathcal{O}_L:I]$$
,

where

$$M_L := \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|d_L|} \; .$$

(d) Deduce that

$$|d_L| \ge \left(\frac{n^n}{n!} \left(\frac{\pi}{4}\right)^s\right)^2$$

and that

 $|d_L| > 1$.

Exercise 2. Determine the density of the Minkowski lattice of the maximal order of the number fields $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\zeta_3)$ and compare this to the maximal density of lattices in \mathbb{R}^2 .

Exercise 3. Consider the lattice $\Lambda \subset \mathbb{R}^5$ with basis given by the rows of the matrix

$$A \coloneqq \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

- (a) Find all lattice points $x \in \Lambda$ with $||x||^2 \leq 4$.
- (b) Determine the successive minima of Λ .
- (c) Show that Λ has no basis b_1, \ldots, b_5 with $||b_i|| = \lambda_i(\Lambda)$ for all $i = 1, \ldots, 5$.

¹For the second inequality use the inequality between geometric and arithmetic mean.