1 15. Juli 2010

Aufgabe 19. Bestimme die Blöcke, die Defektgruppen und die Zerlegungszahlen der Diedergruppe D_6 (Ordnung 12) für alle Primzahlen p.

1.1 Lemma. Sei $n \geq 3$ mit $n \equiv 2 \mod (4)$. Dann ist $D_n \cong D_{n/2} \times C_2$.

Beweis. Es ist $D_n = \langle r, s \mid r^n = s^2 = 1, srs = r^{-1} \rangle$. Wir zeigen, dass D_n das innere direkte Produkt der Untergruppen $H := \langle r^2, s \rangle \cong D_{n/2}$ und $U := \langle r^{n/2} \rangle \cong C_2$ ist. Da n gerade ist, gilt $C_{D_n}(s) = \langle s, r^{n/2} \rangle$. Folglich kommutieren H und U elementweise. Es ist n = 4k - 2 für ein $k \in \mathbb{Z}$, d.h. $\frac{n+2}{4} = k \in \mathbb{Z}$. Daher ist

$$r = r^{n+1} = r^{\frac{2n+2}{2}} = r^{\frac{n+2}{2} + \frac{n}{2}} = (r^2)^k \cdot r^{\frac{n}{2}} \in HU.$$

Offensichtlich ist $s \in HU$ und somit $HU = D_n$, d.h. die Multiplikation $H \times U \to D_n$ ist surjektiv. Da beide Gruppen gleiche Ordnung haben, ist diese aber auch injektiv, d.h. es ist ein Isomorphismus und daher ist $D_n = H \times U$.

Obiges Lemma können wir für n=6 anwenden und erhalten $D_6\cong D_3\times C_2$. Die Coxeter-Präsentation von D_3 ist gleich der Coxeter-Präsentation von S_3 , d.h. $D_6\cong S_3\times C_2$. Die Darstellungstheorie der D_6 erhalten wir also aus der von S_3 und der von C_2 mit folgendem Satz:

1.2 Theorem. Seien G, H zwei endliche Gruppen und sei K ein Zerfällungskörper beider Gruppen. Für $V \in {}_{KG}$ mod und $W \in {}_{KH}$ mod macht man den K-Modul $V \otimes_K W$ zu einem $K(G \times H)$ -Modul mittels

$$(g,h)\sum_{i}v_{i}\otimes w_{i}:=\sum_{i}gv_{i}\otimes hw_{i}.$$

Man bezeichnet diesen $K(G \times H)$ -Modul auch mit V # W, um Missverständnisse zu vermeiden. Folgendes gilt:

- (i) Die Zuordnung $\operatorname{Simp}(KG) \times \operatorname{Simp}(KH) \to \operatorname{Simp}(K(G \times H)), (V, W) \mapsto V \# W$, ist wohldefiniert und ist (modulo Isomorphie) eine Bijektion.
- (ii) Die Abbildung $G_0(KG) \otimes_{\mathbb{Z}} G_0(KH) \to G_0(K(G \times H)), [V] \otimes [W] \to [V \# W]$, ist ein Isomorphismus.
- (iii) Sind C_1, \ldots, C_n die Konjugiertenklassen von G und sind C'_1, \ldots, C'_m die Konjugiertenklassen von H, so sind $\{C_i \times C'_j \mid 1 \le i \le n, 1 \le j \le m\}$ die Konjugiertenklassen von $G \times H$ (alle paarweise verschieden, d.h. deren Anzahl ist gleich nm). Analog gilt die Aussage für p-reguläre Konjugiertenklassen mit einer Primzahl p.
- (iv) Für die Darstellungen gilt $\rho_{V\#W}(g,h) = \rho_V(g) \otimes \rho_W(h) \in \operatorname{End}_K(V \otimes_K W)$. Insbesondere ist $\chi_{V\#W}(g,h) = \chi_V(g) \cdot \chi_W(h)$.
- (v) Sind B_1, \ldots, B_n die KG-Blöcke und B'_1, \ldots, B'_m die KH-Blöcke, so sind $\{B_i \times B'_j \mid 1 \le i \le n, 1 \le j \le m\}$ die $K(G \times H)$ -Blöcke (alle paarweise verschieden).

Weiterhin gilt für ein modulares System (K, R, \mathfrak{m}) mit K groß genug für $G \times H$ und Restekörper $L := R/\mathfrak{m}$:

(vi) Sei d : $G_0(KG) \to G_0(LG)$ die Zerlegungsabbildung von G und d' : $G_0(KH) \to G_0(LH)$ die Zerlegungsabbildung von H. Dann ist $d \otimes d'$ die Zerlegungsabbildung von $G \times H$.

- (vii) Für $V \in {}_{LG} \text{mod } \text{und } W \in {}_{LH} \text{mod } \text{gilt } \beta_{V\#W}(g,h) = \beta_V(g) \cdot \beta_W(h).$
- (viii) Ist B ein LG-Block und B' ein LH-Block, so gilt $D_{B\times B'}=D_B\times D_{B'}$ für die Defektgruppen.

Beweis. Für (i) siehe [CR81, 10.33]. Der Rest ist nicht schwer.

Die Charakter
tafel von S_3 in Charakteristik 0 ist

$$\mathbf{A} := \begin{bmatrix} & (1) & (1,2) & (1,2,3) \\ \chi_1 & 1 & 1 & 1 \\ \chi_2 & 1 & -1 & 1 \\ \chi_3 & 2 & 0 & -1 \end{bmatrix}$$

und die Charaktertafel von $C_2 = \langle \xi \rangle$ in Charakteristik 0 ist

$$\mathbf{A}' := \begin{bmatrix} & 1 & \xi \\ \psi_1 & 1 & 1 \\ \psi_2 & 1 & -1 \end{bmatrix}$$

15. Juli 2010 2

Die Charaktertafel von $D_6 \cong S_6 \times C_2$ in Charakteristik 0 ist also:

		$(1) \times 1$	$(1) \times \xi$	$(1,2) \times 1$	$(1,2) \times \xi$	$(1,2,3)\times 1$	$(1,2,3) \times \xi$
	$\chi_1 \# \psi_1$	1	1	1	1	1	1
	$\chi_1 \# \psi_2$	1	-1	1	-1	1	-1
$\mathbf{A} \otimes \mathbf{A}' =$	$\chi_2 \# \psi_1$	1	1	-1	-1	1	1
	$\chi_2 \# \psi_2$	1	-1	-1	1	1	-1
	$\chi_3 \# \psi_1$	2	2	0	0	-1	-1
	$\chi_3 \# \psi_2$	2	-2	0	0	-1	1

Die für die modulare Darstellungstheorie interessanten Primzahlen sind nur die Teiler von $|D_6| = 12$, also 2 und 3; bei allen anderen passiert nichts.

 $\mathbf{p}=\mathbf{2}$: Sei (K,R,\mathfrak{m}) ein 2-modulares System mit $\operatorname{Char}(K)=0$ und K groß genug für D_6 . Sei $L:=R/\mathfrak{m}$ der Restekörper. Die p'-Konjugiertenklassen von S_3 sind (1) und (1,2,3), d.h. es gibt zwei irreduzible L-Darstellungen. Offensichtlich ist $\beta_1:=\chi_1^\circ=\chi_2^\circ$ der Brauer-Charakter der trivialen L-Darstellung. Sei β_2 der Brauer-Charakter der anderen irreduziblen L-Darstellung. Es ist $\mathrm{S}_3^{\mathrm{ab}}\cong\mathrm{C}_2$ und in Charakteristik 2 hat C_2 nur eine irreduzible Darstellung. Folglich kann β_2 nicht eindimensional sein und daher ist bereits $\beta_2=\chi_3^\circ$. Die Brauer-Charaktertafel von S_3 ist also

$$\mathbf{X} := \begin{bmatrix} & & (1) & (1, 2, 3) \\ \beta_1 = \chi_1^{\circ} & 1 & 1 \\ \beta_3 = \chi_3^{\circ} & 2 & 1 \end{bmatrix}$$

und die Zerlegungsmatrix ist

$$\mathbf{D} := \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

An der Zerlegungsmatrix sehen wir, dass es zwei RS_3 -Blöcke B_1 bzw. B_2 gibt, in dem β_1 bzw. β_2 liegt. In B_2 liegt nur eine irreduzible K-Darstellung (χ_3) , d.h. B_2 hat Defekt 0 und daher ist die Defektgruppe D_{B_2} trivial. Im Hauptblock B_1 liegen allerdings zwei irreduzible K-Darstellungen $(\chi_1$ und $\chi_2)$. Die Defektgruppe D_{B_1} des Hauptblocks B_1 ist eine Sylow 2-Untergruppe von S_3 (das ist für den Hauptblock immer so), z.B. $D_{B_1} = \langle (1,2) \rangle \cong C_2$. Der Defekt von B_1 ist insbesondere gleich 1.

Wie oben bereits erwähnt hat C_2 nur eine irreduzible L-Darstellung. Die Brauer-Charaktertafel ist also

$$\mathbf{X}' := \boxed{ \begin{array}{c|c} & 1 \\ \hline \gamma_1 = \psi_1^{\circ} & 1 \end{array}}$$

und die Zerlegungsmatrix ist

$$\mathbf{D}' := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

Es gibt einen RC_2 -Block B'. Dies ist der Hauptblock und daher ist seine Defektgruppe eine Sylow 2-Untergruppe von C_2 , d.h. $D_{B'} = C_2$. Der Defekt von B' ist insbesondere gleich 1.

Die Brauer-Charaktertafel von $D_6 \cong S_3 \times C_2$ ist also

$$\mathbf{X} \otimes \mathbf{X}' = \begin{bmatrix} & (1) \times 1 & (1, 2, 3) \times 1 \\ \beta_1 \# \gamma_1 & 1 & 1 \\ \beta_2 \# \gamma_1 & 2 & 1 \end{bmatrix}$$

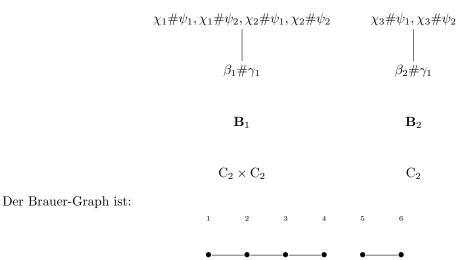
und die Zerlegungsmatrix ist

$$\mathbf{D} \otimes \mathbf{D}' = egin{pmatrix} 1 & 0 \ 1 & 0 \ 1 & 0 \ 1 & 0 \ 0 & 1 \ 0 & 1 \end{pmatrix}.$$

Es gibt zwei RD_6 -Blöcke, nämlich $\mathbf{B}_1 := B_1 \times B'$ und $\mathbf{B}_2 := B_2 \times B'$. Die irreduzible L-Darstellung in \mathbf{B}_1 ist $\beta_1 \# \gamma_1$ und die irreduziblen K-Darstellungen in diesem Block sind $\chi_1 \# \psi_1, \chi_1 \# \psi_2, \chi_2 \# \psi_1, \chi_2 \# \psi_2$,

3 15. Juli 2010

d.h. genau die eindimensionalen. Es ist $D_{\mathbf{B}_1} = C_2 \times C_2$, d.h. der Defekt von \mathbf{B}_1 ist gleich 2. Die irreduzible L-Darstellung in \mathbf{B}_2 ist $\beta_2 \# \gamma_1$ und die irreduziblen K-Darstellungen in diesem Block sind $\chi_3 \# \psi_1$ und $\chi_3 \# \psi_2$. Es ist $D_{\mathbf{B}_2} = 1 \times C_2 = C_2$, d.h. der Defekt von \mathbf{B}_2 ist gleich 1. Wir erhalten folgendes Bild:



 $\mathbf{p} = \mathbf{3}$: Sei (K, R, \mathfrak{m}) ein 3-modulares System mit $\operatorname{Char}(K) = 0$ und K groß genug für D_6 . Sei $L := R/\mathfrak{m}$ der Restekörper. Die p'-Konjugiertenklassen von S_3 sind (1) und (1,2), d.h. es gibt zwei irreduzible L-Darstellungen. Offensichtlich ist $\beta_1 := \chi_1^{\circ}$ der Brauer-Charakter der trivialen L-Darstellung. Da $\beta_2 := \chi_2^{\circ} \neq \beta_1$ und dieser eindimensional ist, muss dieser Brauer-Charakter bereits der andere irreduzible sein. Die Brauer-Charaktertafel von S_3 ist also

$$\mathbf{X} := \begin{bmatrix} & & (1) & (1,2) \\ \beta_1 = \chi_1^{\circ} & 1 & 1 \\ \beta_2 = \chi_2^{\circ} & 1 & -1 \end{bmatrix}$$

und da $\chi_3^{\circ} = \beta_1 + \beta_2$ ist Zerlegungsmatrix

$$\mathbf{D} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

An der Zerlegungsmatrix sehen wir, dass es nur einen RS_3 -Block B gibt. Da dies der Hauptblock ist, ist seine Defektgruppe D_B eine Sylow 3-Untergruppe von S_3 , z.B. $D_B = A_3$. Der Defekt von B ist insbesondere gleich 1.

Die Gruppe C_2 hat zwei irreduzible L-Darstellung. Die Brauer-Charaktertafel ist also

$$\mathbf{X}' := \begin{bmatrix} & 1 & \xi \\ \gamma_1 = \psi_1^{\circ} & 1 & 1 \\ \gamma_2 = \psi_2^{\circ} & 1 & -1 \end{bmatrix}$$

und die Zerlegungsmatrix ist

$$\mathbf{D}' := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Es gibt zwei RC_2 -Blöcke B_1' bzw. B_2' , in dem γ_1 bzw. γ_2 liegt. Beide Blöcke haben offensichtlich Defekt 0 und daher ist $D_{B_1'} = 1 = D_{B_2'}$.

Die Brauer-Charaktertafel von $D_6 \cong S_3 \times C_2$ ist also

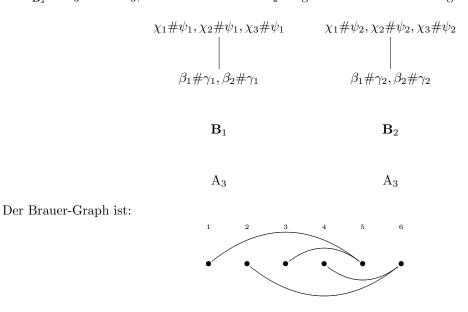
$$\mathbf{X} \otimes \mathbf{X}' = \begin{bmatrix} & (1) \times 1 & (1) \times \xi & (1,2) \times 1 & (1,2) \times \xi \\ \beta_1 \# \gamma_1 & 1 & 1 & 1 & 1 \\ \beta_1 \# \gamma_2 & 1 & -1 & 1 & -1 \\ \beta_2 \# \gamma_1 & 1 & 1 & -1 & -1 \\ \beta_2 \# \gamma_2 & 1 & -1 & -1 & 1 \end{bmatrix}$$

15. Juli 2010 4

und die Zerlegungsmatrix ist

$$\mathbf{D}\otimes\mathbf{D}'=\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\\1&0&1&0\\0&1&0&1\end{pmatrix}.$$

Es gibt zwei RD_6 -Blöcke, nämlich $\mathbf{B}_1 := B \times B_1'$ und $\mathbf{B}_2 := B \times B_2'$. Die irreduziblen L-Darstellungen in \mathbf{B}_1 sind $\beta_1 \# \gamma_1, \beta_2 \# \gamma_1$ und die irreduziblen K-Darstellungen in diesem Block sind $\chi_1 \# \psi_1, \chi_2 \# \psi_1, \chi_3 \# \psi_1$. Es ist $D_{\mathbf{B}_1} = \mathbf{A}_3 \times 1 = \mathbf{A}_3$, d.h. der Defekt von \mathbf{B}_1 ist gleich 1. Die irreduziblen L-Darstellungen in \mathbf{B}_2 sin $\beta_1 \# \gamma_2, \beta_2 \# \gamma_2$ und die irreduziblen K-Darstellungen in diesem Block sind $\chi_1 \# \psi_2, \chi_2 \# \psi_2, \chi_3 \# \psi_2$. Es ist $D_{\mathbf{B}_2} = \mathbf{A}_3 \times 1 = \mathbf{A}_3$, d.h. der Defekt von \mathbf{B}_2 ist gleich 1. Wir erhalten folgendes Bild:



Literatur

[CR81] Charles W. Curtis and Irving Reiner, Methods of representation theory, vol. 1, John Wiley & Sons, 1981.