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Abstract. I am collecting here corrections and comments to my publications.
Luckily, there was nothing fatal yet.

8. Highest weight theory for finite-dimensional graded algebras
with triangular decomposition1

For Theorem 5.1 to be valid we have to assume that A is self-injective, which is
not mentioned in the paper. Below, we will give a corrected proof of the theorem
under this assumption and a counter-example to the claim without it. Since we
apply the theorem only in the self-injective situation, it’s not dramatic.

The proof, as written in the paper, contains a mistake that was pointed out to
us by Jonathan Brundan in February 2020 (many thanks for this!): in the middle
of the proof, after diagram (68), we claim that \mathrm{E}\mathrm{x}\mathrm{t}1\scrG (A)(M,\mathrm{K}\mathrm{e}\mathrm{r}\pi ) = 0. This claim
is false since \mathrm{K}\mathrm{e}\mathrm{r}\pi has a standard filtration, but we would require it to have a
costandard filtration in order for our argument to work.

Under the assumption that A is self-injective we can fix the proof by starting with
a costandard filtration of the tilting object M . Here are the details. We will need
Theorem 5.8, which is independent of Theorem 5.1. So, we will move Theorem 5.1
and Corollary 5.7 after Theorem 5.8 and assume everywhere that A is self-injective.

Theorem 5.1* If A is self-injective, the tilting objects in \scrG (A) are precisely the
projective objects.

Proof. A projective object M is projective-injective and the same argument as in
the proof of Theorem 5.1 shows that it is tilting.

Conversely, assume that M is tilting. We need to show that it is projective.
Let 0 = M0 \subset M1 \subset . . . \subset Ms - 1 \subset Ms = M be a costandard filtration with
Mi/Mi - 1 \simeq \nabla (\lambda i - 1). Let q : M \twoheadrightarrow \nabla (\lambda s - 1) be the quotient morphism. Let \lambda :=

\lambda h - 1

s - 1, where h is the permutation from Theorem 5.8(a). We know from Theorem
5.8(e) that \nabla (\lambda s - 1) is at the top of every costandard filtration of P (\lambda ). We thus
have a quotient morphism \pi : P (\lambda ) \twoheadrightarrow \nabla (\lambda s - 1). Due to the projectivity of P (\lambda )
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there is \eta : P (\lambda ) \rightarrow M making the diagram

M

P (\lambda ) \nabla (\lambda s - 1)

q

\pi 

\eta (68*)

commutative. Since P (\lambda ) is projective, it has a costandard filtration by the above,
hence so does \mathrm{K}\mathrm{e}\mathrm{r}\pi . Since M is tilting, it also has a standard filtation. An induc-
tive application of the Ext-vanishing statement in Lemma 4.3(b) thus shows that
\mathrm{E}\mathrm{x}\mathrm{t}1\scrG (A)(M,\mathrm{K}\mathrm{e}\mathrm{r}\pi ) = 0. Hence, applying \mathrm{H}\mathrm{o}\mathrm{m}\scrG (A)(M, - ) to the exact sequence

0 \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}\pi \rightarrow P (\lambda )
\pi \rightarrow \nabla (\lambda s - 1) \rightarrow 0

yields an exact sequence

0 \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}\scrG (A)(M,\mathrm{K}\mathrm{e}\mathrm{r}\pi ) \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}\scrG (A)(M,P (\lambda )) \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}\scrG (A)(M,\nabla (\lambda s - 1)) \rightarrow 0 .

In particular, there is \nu : M \rightarrow P (\lambda ) making the diagram

M P (\lambda )

\nabla (\lambda s - 1)

\nu 

q
\pi 

(69*)

commutative. From Diagrams (68*) and (69*) we obtain a commutative diagram

P (\lambda ) M P (\lambda )

\nabla (\lambda s - 1)

\mathrm{H}\mathrm{d}\nabla (\lambda s - 1) = L(\lambda h - 1

s - 1) = L(\lambda ) ,

\eta 

\pi 

\nu 

q
\pi 

where the equation at the bottom follows from Theorem 5.8(f). The uniqueness of
projective covers of L(\lambda ) now shows that \nu \circ \eta is an isomorphism. In particular, \nu 
is surjective and therefore P (\lambda ) is a direct summand of M . By induction on the
length of the costandard filtration of M we obtain that M is in fact projective. \square 

Here is a counter-example to the claim when A is not self-injective. We show
at the beginning of the proof of Theorem 5.1 (as in the paper) that M is tilting
if and only if \mathrm{R}\mathrm{e}\mathrm{s}B - M is projective and \mathrm{R}\mathrm{e}\mathrm{s}B+ M is injective. Consider the non-
selfinjective algebra A := \BbbC [x1, x2]/(x

2
1, x1x2, x

2
2) with triangular decomposition

(A - := A, T := \BbbC , A+ := \BbbC ). Then M is tilting if and only if M is projective. In
particular, M = A is tilting but it is not injective. If we swap the role of A+ and
A - then the tilting modules are precisely the injective modules.

5. Cuspidal Calogero–Moser and Lusztig families for Coxeter
groups2

There is a very tiny gap in the proof of Theorem 4.2 on page 216: | Z(W )| = 1
implies that W \simeq G(m,m, n) or W \simeq E6. We forgot the E6 case. But here a quick

2J. Algebra 462 (2016), 197–252. With G. Bellamy.
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computer check (for example in CHAMP using the function ParabolicBranchingIndex,
or in CHEVIE with the respective commands) shows that every irreducible char-
acter of a proper parabolic of E6 splits into at least two characters when inducing
to E6, so this case is fine too.

4. Restricted rational Cherednik algebras3

Some typos in appendix B: replace \rho by \varphi in equations (127) and (128), replace
\zeta by \zeta i in the definition of \varphi i(t) at the beginning of appendix B.

3. Decomposition matrices are generically trivial4

A typo in Theorem 1.21 (p. 14): Replace “R \cap \scrO = p” by “R \cap m = p”.

In §6.2 I was not careful enough when defining constructible sets for non-noetherian
schemes. Namely, a constructible subset of a (not necessarily noetherian) scheme X
is defined to be a finite union of sets of the form U \cap (X \setminus V ) where U, V \subseteq X are
retro-compact open subsets. I forgot the retro-compactness. So, an arbitrary locally
closed subset will in general not be constructible and not ind-constructible. For this
to be true, we need to assume that X is noetherian. This is why in Proposition 6.2,
Example 6.11, and Lemma 6.13 we need to assume that \scrP is a property for algebras
over noetherian rings. As we only apply these results for algebras over noetherian
rings anyways, everything else remains valid.

2. CHAMP: A Cherednik Algebra Magma Package5

A typo in Theorem 1.4 (p. 272): I was sloppy writing down the R-basis of R\langle V \oplus 
V \ast \rangle . Of course, it is not formed by elements of the form \bfx \alpha \bfy \beta . We need arbitrary
products of xi’s and yi’s in arbitrary order. So, an R-basis is formed by elements
of the form (\bfx \bfy )\gamma with \gamma \in F2n, where (\bfx \bfy )\gamma =

\prod 2n
i=1(\bfx \bfy )\gamma (i) and (\bfx \bfy )\gamma (i) = xi if

\gamma (i) \leq n and (\bfx \bfy )\gamma (i) = y\gamma (i) - n otherwise. In the theorem “R-basis \bfx \alpha \bfy \beta g” should
thus be replaced by “R-basis ((\bfx \bfy )\gamma g)\gamma \in F2n,g\in G”. This does not change anything in
the theorem, however.

3EMS Ser. Congr. Rep., Representation theory – current trends and perspectives (2016),
681–745.

4Int. Math. Res. Not. IMRN (2016), no. 7, 2157–2196.
5LMS J. Comput. Math. 18 (2015), no. 1, 266–307.
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