Lecture 17 (6.1)

We call units as in Lemma 7.8 Dirichlet units.

We will now construct such units. This needs some preparation.

Lemma 7.9

For any i, let $i \leq r+s-1$, there is $C_i \in \mathbb{R}^+$ such that given any non-zero $x \in \mathbb{G}$ there is a non-zero β in \mathbb{G} such that

1. $|N(\beta)| \leq C_i$
2. $|\sigma_j(\beta)| < \left| \sigma_j(x) \right|$ for $j \neq i$.

Proof: We will show that $C_i = (\frac{2}{\pi})^{s} \sqrt{|d|}$ works (independent of i).

For $1 \leq j \leq r+s$ choose $a_j > 0$ such that

$$a_j < \left| \sigma_j(x) \right|$$

(note: $A \to 0 = \sigma_j(0) = 0$, so this is possible)

For $1 \leq j \leq r+s$ define $C_{i,j} := a_j$ if $j \neq i$ and let $C_{i,i}$ be such that

$$\frac{r+s}{|i|} C_{i,j} = \left(\frac{2}{\pi} \right)^{s} \sqrt{|d|} = C_i.$$

Consider the set $E_i := E_i(x) \subset \mathbb{R}^r \times \mathbb{R}^{2s}$ of all (x_1, \ldots, x_{r+s}) such that

$$|x_{ij}| \leq C_{i,j} \quad \text{for} \quad 1 \leq j \leq r$$

and

$$x_{2j-r,1}^2 + x_{2j-r,2}^2 \leq 2C_{2j-r}^2 \quad \text{for} \quad r+1 \leq j \leq r+s$$

Then

$$\text{vol}(E_i) = \prod_{j=1}^{r} C_{i,j} \cdot \prod_{j=r+1}^{r+s} 2C_{2j-r}^2 = 2^{r+s} \pi^s \prod_{j=1}^{r+s} C_{i,j}^2$$

$$= 2^{r+s} \pi^s \left(\frac{2}{\pi} \right)^s \sqrt{|d|} = 2^{r+s} \sqrt{|d|} = 2^n d(\Lambda),$$

where $\Lambda := \mathcal{L}(\mathbb{G})$ is the Minkowski lattice.

Hence, by Minkowski's lattice point theorem (Thm 6.18), there is a non-zero point $\beta \in \mathbb{G}$ with $\beta \in E_i$. For such a point we have
\[\tilde{u}(\beta) = (\sigma_1(\beta), \ldots, \sigma_r(\beta), \sqrt{2} \Re \kappa_1(\beta), \sqrt{2} \Im \kappa_1(\beta), \ldots, \sqrt{2} \Re \kappa_s(\beta), \sqrt{2} \Im \kappa_t(\beta)) \]

\[1 \leq i \leq r \]

\[\Rightarrow |\sigma_i(\beta)| \leq C_{ij} \]

\[\Rightarrow 2 |\sigma_i(\beta)|^2 \leq 2C_{ij}^2 \]

\[\Rightarrow |\sigma_i(\beta)| \leq C_{ij} \]

Hence, we have

\[|\sigma_i(\beta)| \leq C_{ij} \quad \forall j \]

Hence,

\[|\sigma_j(\beta)| \leq \alpha_j < |\sigma_i(\alpha)| \quad \text{for} \quad j \neq i \]

and

\[|N(\beta)| = \prod_{j=1}^{n} |\sigma_j(\beta)| = \prod_{j=1}^{r} |\sigma_j(\beta)|^\gamma_j \leq \prod_{j=1}^{r} C_{ij}^\gamma_j = C. \]

Lemma 7.10

Give \(C \in \mathbb{R} \), there are only finitely many non-associate elements \(\alpha \in G \) with \(|N(\alpha)| \leq C \).

Proof:

Since \(N(\alpha) \in \mathbb{Z} \) for \(\alpha \in G \), we can assume \(\mathbb{C} = \mathbb{C}_0 \).

Let \(I = \mathbb{C} : G \), non-zero ideal of \(G \). We first prove the following

Claim: If \(\alpha, \beta \in G \) are such that \(\alpha \cdot \beta \in I \) and \(|N(\alpha)| = C = |N(\beta)| \), then they are associate.

Proof: We have \(\alpha \cdot \beta = \gamma \cdot C \) for some \(\gamma \in G \). Hence,

\[\frac{\alpha}{\beta} = 1 + \frac{C}{\beta} \cdot \gamma = 1 + \frac{|N(\beta)|}{\beta} \cdot \gamma \]

Let \(X_\beta = \sum_{i=0}^{\infty} \alpha_i \cdot \beta_i \) be the characteristic polynomial of \(\beta \). Then \(\alpha_0 = \pm N(\beta) \).

Hence \(0 = X_\beta(\beta) = \pm N(\beta) + \sum_{i=1}^{\infty} \alpha_i \cdot \beta_i = \pm N(\beta) + \beta \cdot \left(\sum_{i=1}^{\infty} \alpha_i \cdot \beta_i^{-1} \right) \cdot \beta = \pm N(\beta) + \beta \cdot \left(\sum_{i=1}^{\infty} \alpha_i \cdot \beta_i^{-1} \right) \cdot \beta \in \mathbb{C} \)

\[\Rightarrow |N(\beta)| \leq |\beta| \in G \Rightarrow \frac{\alpha}{\beta} \in G \]

Similarly, \(\frac{\beta}{\alpha} \in G \Rightarrow \frac{\alpha}{\beta} \in G \) is a unit \(\Rightarrow \alpha \) and \(\beta \) are associated.
Now, let \(A = \{ x \mid x \in E, N(x) = c \} \subseteq G / I. \) By Lemma 5.23, \(\dim \mathbb{Z} = \dim \mathbb{Z}_6 \) \(\Rightarrow \) \(G / I \) is finite. Let \(\alpha_1, \ldots, \alpha_r \) be representatives of \(A. \) If \(x \in E \) with \(N(x) = c \), then \(x = \alpha_i \) and \(I \) for some \(i = \alpha_i \), associate. \(\square \)

Now, we can prove:

Prop 7.11

There are \(\varepsilon_1, \ldots, \varepsilon_{r+s-1} \in G^\ast \) satisfying the properties of Lemma 7.8.

Hence, \(G^\ast / \mathbb{Z}(G) \) is free of rank \(r+s-1 \) and \(\left\langle \varepsilon_1(G) \right\rangle \cap \mathbb{Z}(G) \) is a lattice.

Proof:

For each \(i, 1 \leq i \leq r+s-1, \) do the following:

Choose \(\varepsilon_i \) as in Lemma 7.9. Choose a non-zero \(\alpha_i, 1 \in G. \)

By Lemma 7.9, there is a non-zero \(\alpha_i, 1 \in G \) with \(N(\alpha_i, 1) \leq C_i \) and

\[
|\varepsilon_j(\alpha_i, 1)| = |\varepsilon_j(\alpha_i, 1)| \neq i.
\]

Repeating this process yields a sequence \(\varepsilon_i, 1 \in G \) with

\[
|N(\varepsilon_i)| \leq C_i, \quad |\varepsilon_j(\varepsilon_i)| = |\varepsilon_j(\varepsilon_i)|, \quad \forall j \neq i.
\]

By Lemma 7.10, there are only finitely many non-associate elements in \(G \) with norm bounded by \(C_i. \) Hence, there is \(\varepsilon_i, 1, 1 \in G \), \(h_i \geq k_i \), such that

\[
\varepsilon_i := \frac{\varepsilon_i, 1}{\varepsilon_i, 1} \in G^\ast
\]

We have

\[
|\varepsilon_j(\varepsilon_i)| = \frac{\varepsilon_j(\varepsilon_i, 1)}{\varepsilon_j(\varepsilon_i, 1)} < 1
\]

Since \(\varepsilon_i \in G^\ast \), we have \(N(\varepsilon_i) = 1 \) and since \(N(\varepsilon_i) = \prod_{i=1}^n \varepsilon_i(\varepsilon_i) \), we must have \(|\varepsilon_j(\varepsilon_i)| > 1 \).

The \(\varepsilon_1, \ldots, \varepsilon_{r+s-1} \) constructed thus satisfy the assumptions of Lemma 7.8 \(\Rightarrow \) they are linearly independent \(\Rightarrow \) \(\dim \mathbb{Z} G^\ast / \mathbb{Z}(G) = r+s-1. \)

By Prop 7.6 \(\leq r+s-1 \), hence \(r+s-1. \) \(\square \)
Corollary 7.12 (Dirichlet's unit theorem)

\[G^* \approx \left(\mathbb{Z}/m\mathbb{Z} \right) \times \mathbb{Z}^{r+s-1} \]

as abelian groups, where \(m = |TU(G)| \).

\[\Box \]

Definition 7.13

A \(\mathbb{Z} \)-basis \(\epsilon_1, \ldots, \epsilon_{r+s-1} \) of the free part of \(G^* \) is called a system of fundamental units.

Definition 7.14

The discriminant of the lattice \(j^*(G^*) \subset \mathbb{R}^{r+s-1} \) is called the regulator of \(G \), denoted \(\text{reg} \ G \).

So,

\[\text{reg} \ G = \left| \det \left(j^*(\epsilon_1), \ldots, j^*(\epsilon_{r+s-1}) \right) \right| \in \mathbb{R}_{>0} \]

for one (any) system of fundamental units.

We write \(\text{reg} \ L := \text{reg} \ G_L \).

Remark 7.15

Dirichlet units \(\epsilon_1, \ldots, \epsilon_{r+s-1} \) as constructed in Prop 7.11 generate an \(r+s-1 \)-dimensional group, hence a subgroup \(U \) of \(G^* \) of finite index. But we do not need to have \(G^* = U \). Similar situation as with equation order in the maximal order. We have

\[\left[G^*, U \right] = \frac{\text{reg} \ U}{\text{reg} \ G} \] \[\text{reg} \ U := \left| \det \left(j^*(\epsilon_1), \ldots, j^*(\epsilon_{r+s-1}) \right) \right| \]

7.4 Remarks

The proof of Dirichlet's unit theorem (§7.1 - §7.3) yields an algorithm to compute \(G^* \):

1. Compute \(TU(G) \) by computing all \(\alpha \in G \) with \(\| j(\alpha) \|^2 = 1 \) (Prop 7.1).
2. Compute Dirichlet units \(\epsilon_1, \ldots, \epsilon_{r+s-1} \) (Lemma 7.8) by following the proof of Prop 7.11. To this end, one needs to make Lemma 7.9 constructive, more precisely
we need to find a $\beta \in E_\gamma(\chi)$ whose existence is implied by Minkowski’s theorem. A brutal way to find this is as follows; $E_\gamma(\chi)$ was the set of $(x_k)_k \in \mathbb{N}$ with

$$|x_k| \leq C_{i,j} \quad \text{for} \quad 1 \leq j \leq r$$

$$x_{2j-1}^2 + x_{2j}^2 \leq 2C_{i,j}^2 \quad \text{for} \quad r+1 \leq j \leq r+s$$

Hence,

$$x_j^2 \leq C_{i,j}^2 \quad \text{for} \quad 1 \leq j \leq r$$

$$x_{2j-r-1}^2 \times x_{2j-r}^2 \leq 2C_{i,j}^2$$

So

$$\|x_k\|^2 = \sum_{j=1}^{r} C_{i,j}^2 + 2 \sum_{j=r+1}^{r+s} C_{i,j}^2 = \sum_{j=1}^{r} C_{i,j}^2 + 4 \sum_{j=r+1}^{r+s} C_{i,j}^2 \:<: \: C_\gamma(\chi)^2$$

Thus determine all lattice points $x \in \Lambda$ with $\|x\| \leq C_\gamma(\chi)$ and check if properties in Lemma 7.9 hold.

This is very inefficient, however, it can be done more efficiently using LLL.

By Lemma 7.8, e_1, \ldots, e_{r+s} are linearly independent and $G^* / \mathbb{Z} \cdot \mathbb{Z}^{r+s-1}$ is finite by the proof of Prop 7.6 and 7.7.

3. Let $C' = \frac{1}{2} \sum_{i=1}^{r+s-1} \|x^*(e_i)\|$ and compute $U := \{ \mu \in G^* | \|j(\mu)\| \leq C \}$, $C = \text{fin} C'$. Then $G^* / \mathbb{Z} \cdot \{ e_1, \ldots, e_{r+s-1} \} \subseteq U$ by the proof of Prop 7.6 and 7.7.

Hence, $G^* = \mathbb{Z} \cdot \{ e_1, \ldots, e_{r+s-1} \} \subseteq U$.

4. The vectors $j^*(e_i)$ for $i \in U$ and $e \in E_{r+s-1}$ span the lattice $j^*(G^*)$.

Use R-linear algebra to find relations and extract a \mathbb{Z}-basis for this lattice.

The corresponding units yield a system of fundamental units.

Without improvements/ modifications, this algorithm is very inefficient and cannot be used in practice.

Step 2 is about finding $r+s-1$ linearly independent units. There are also other ways to achieve this.
Step 3 is about the following: we have a subgroup $U = \mathbb{Z} \cdot \{e_1, \ldots, e_{r+s-1}\}$ of finite index in G^*. We need to check whether $U = G^*$ already, and if not need to enlarge U.

The situation is very similar to the computation of an integral basis (§53):

$$G^*/U \simeq \mathbb{Z}/p_1^{n_1} \mathbb{Z} \times \cdots \times \mathbb{Z}/p_k^{n_k}\mathbb{Z},$$

where $[G^*/U] = p_1^{n_1} \cdots p_k^{n_k}$.

Hence, for any $p \mid [G^*/U]$ we have to determine the maximal p-subgroup U_p of G^*, $U_p = \{ x \in G^* \mid x^{p^k} \in U \}$ for some power of p (or test whether $U = U_p$ already).

There is an algorithm to compute U_p (we skip this; note that for G we used that G is a ring; G^* is just a group).

What are the "critical" primes?

We have

$$[G^*/U] = \frac{\text{reg } G}{\text{reg } U},$$

Suppose we can bound $B \leq \text{reg } G$. Then

$$[G^*/U] \leq \frac{\text{reg } U}{B},$$

so if $p \mid [G^*/U]$, then $p \leq \frac{\text{reg } U}{B}$.

We thus want good lower bounds for the regulator of G.

Prop 7.16 (without proof, skipped)

Let $\mathcal{N}_2 : L \to \mathbb{R}^n$, $\alpha \mapsto (\log |\sigma_i(\alpha)|)_{i=1}^n$. Let $\Lambda = \mathcal{N}_2(G^*)$, a lattice in \mathbb{R}^n. $\Lambda \cong \mathbb{R}^{r+s-1}$. Then

$$(\text{reg } G)^2 \geq \frac{2^s \lambda_\infty(\Lambda) \cdots \lambda_{r+s-1}(\Lambda)}{n \gamma_{r+s-1}^{r+s-1}}$$

where γ_{r+s-1} is the Hermite constant.