Lecture 19 (13.1)

Finally:

Proof of Thm 8.12

Existence of a factorization: Let \(I \) be the set of all ideals which do not have a factorization. Suppose, \(\emptyset \neq I \). Then by Zorn’s Lemma, \(I \) has a maximal element \(I \). Since \(I \neq \emptyset \), it is contained in a maximal ideal \(P \). Since \(R = \mathbb{P} \), we get:

\[I \subseteq I P^{-1} \cap P P^{-1} \subseteq R. \]

By Lemma 8.14, \(I \neq I P^{-1} \) and \(P \neq P P^{-1} \). Since \(P \) is maximal and \(P P^{-1} \subseteq R \) is an ideal, we must have \(P P^{-1} = R \). Since \(I \neq \emptyset \), it cannot be a prime ideal, so \(I \neq P \), hence \(I P^{-1} \neq P P^{-1} \). Hence \(I \neq I P^{-1} \subseteq R \). By maximality of \(I \) in \(\emptyset \), we thus have \(I P^{-1} \subseteq \emptyset \), so \(I P^{-1} = P_1 \ldots P_r \Rightarrow I = I P^{-1} P = P_1 \ldots P_r P = \mathbb{P} \).

Uniqueness of factorization: Let \(I = P_1 \ldots P_r = Q_1 \ldots Q_s \) be two factorizations.

Then \(Q_1 \ldots Q_s \subseteq P_r \), so \(Q_i = P_j \) for some \(i \) (by general fact in proof of lemma 8.14), \(\deg P_j = 1 \). Since \(R \) is one-dimensional, \(Q_1 = P_1 \). Moreover, \(P_1 \neq P_1 P_2^{-1} \subseteq R \) by Lemma 8.14, so \(P_1 P_2^{-1} = R \) since \(P_1 \) is maximal. Multiplying the factorization by \(P_1 \) thus yields \(P_2 \ldots P_r = Q_2 \ldots Q_s \). Inductively we deduce that \(r = s \) and \(Q_i = P_i \) \(\forall i \) (after reordering appropriately).

\[\square \]

Collecting equal prime ideals in a factorization, we see that any ideal \(I \) has a factorization \(I = P_1^{u_1} \ldots P_r^{u_r} \) with unique \(r \) prime ideals \(P_i \), and \(u_i > 0 \).

Example 8.15

Recall that in \(\mathbb{Z} [\sqrt{-5}] \subset \mathbb{Q} (\sqrt{-5}) \) we have:

\[21 = 3 \cdot 7 = (1 + 2 \sqrt{-5})(1 - 2 \sqrt{-5}) \]

Let:

\[
\begin{align*}
P_1 & := (3, 1 + \sqrt{-5}) & P_3 & := (7, 3 + \sqrt{-5}) \\
P_2 & := (3, 5 + \sqrt{-5}) & P_4 & := (7, 4 + \sqrt{-5})
\end{align*}
\]
Exercise: The P_i are prime ideals and
\[(3) = P_1^2, \quad (7) = P_2^3 P_4, \quad (1 + 2\sqrt{-5}) = P_2 P_4, \quad (1 - 2\sqrt{-5}) = P_1 P_3 \]

\[\Rightarrow (21) = \begin{cases}
(3) (7) = P_1^2 P_2 P_3 P_4 \\
(1 + 2\sqrt{-5})(1 - 2\sqrt{-5}) = P_2 P_4 P_5
\end{cases} \text{ same ideal factorization!} \]

Theorem 8.16
Every non-zero fractional ideal of R is invertible.

Proof:
If P is a non-zero prime ideal, then $P \neq PP^{-1} = R$ by Lemma 8.14, so $PP^{-1} = R$ since P is maximal. Hence, P is invertible. Then, by Thm 8.12, every non-zero ideal is invertible. If I is fractional, then $rI \in R$ for some $r \neq 0$, hence $(rI)^{-1}$ is invertible. Have $(rI)^{-1} = r^{-1} I^{-1} \Rightarrow R = (rI)(rI)^{-1} = (rI)(r^{-1} I^{-1}) = I I^{-1} \Rightarrow I$ is invertible. \(\square\)

Corollary 8.17
Every fractional ideal I has a factorization $I = P_1^{r_1} \cdots P_r^{r_r}$ with unique r_i prime ideals P_i, and $r_i \in \mathbb{Z} \setminus \{0\}.$ \(\square\)

Corollary 8.18
I_R is the free abelian group with basis the non-zero prime ideals of R.

Remark 8.19
Dedekind domains are precisely the integral domains in which every non-zero fractional ideal is invertible.

Lemma 8.20
The following are equivalent (R a Dedekind domain):
a) R is factorial
b) R is a PID
c) $C R$ is trivial (i.e. $I_R = P_R$)
Proof:

(a) \Rightarrow (b): By factorization, it is sufficient to show that every prime ideal is principal.

Let $P \neq 0$ be a prime ideal. Choose $0 \neq p \in P$. Then $(p) = P$. Since R is factorial, $P = \mathcal{P}_1^{e_1} \cdots \mathcal{P}_i^{e_i}$ for prime elements \mathcal{P}_i and a unit $e_i \Rightarrow (\mathcal{P}_i^{e_i}) = \mathcal{P}_i^{e_i} \subseteq P$. Let $\mathcal{P}_i = (\mathcal{P}_i)$, a prime ideal $\Rightarrow \mathcal{P}_i \subseteq P$ for some i (by general fact in proof of Lemma 8.14), $\Rightarrow \mathcal{P}_i = P$ since R one-dimensional $\Rightarrow P$ principal.

(b) \Rightarrow (a): Clear.

(b) \Rightarrow (c): Let I be an invertible fractional ideal $\Rightarrow I \subseteq R$ a principal ideal $\Rightarrow I = aR$ for some $a \in R$ since R PID $\Rightarrow I = \frac{a}{I}R$ is principal.

(c) \Rightarrow (b): Let $I \subseteq R$ be a non-zero ideal

\Rightarrow is invertible by Thm 8.16 $\Rightarrow I = I_R$

Since CLR is trivial, $I_R = P_R = I = xR$ for some $x \in K$.

Since $I \subseteq R$ $\Rightarrow x \in R \Rightarrow I$ principal.

Hence, the CLR measures how far a Dedekind domain is from being a PD. CLR can be arbitrarily complicated; every abelian group is the class group of some Dedekind domain!

8.3 Finiteness of the class group

Throughout, R is the ring of integers in a number field K (special case of Dedekind domain).

Here, the situation is much nicer: we will show that $\text{Cl}_K = \text{CLR}$ is finite!

This will follow from Minkowski's theory.

Another important ingredient is the ideal norm: recall from Lemma 5.23 that a non-zero ideal $I \subseteq R$ is a free \mathbb{Z}-module of the same dimension as R, hence $|I \cap R| = |R/I|_\mathbb{Z}$ is finite.
Def 8.21

\[N(I) := [R : I] \]

is called the (ideal) norm of \(I \).

Remark 8.22

For a general Dedekind domain \(R \) it is not true that \(R/I \) is finite: take e.g. \(R = \mathbb{Q}[x] \) (a PID) and \(I = (x) \Rightarrow R/I \cong \mathbb{Q} \).

The terminology "norm" is justified by the following property.

Lemma 8.23

If \(O \supseteq a \in R \), then \(\left| N_{L|Q}(a) \right| = N(a) \).

Proof:

Let \(a_1, \ldots, a_n \) be a \(\mathbb{Z} \)-basis of \(R \). Then \(a_1 a_1, \ldots, a_n a_n \) is a \(\mathbb{Z} \)-basis of \((a) \).

Write \(a a_i = \sum_j a_{ij} a_j \) and let \(A := (a_{ij}) \). Then \(\det(A) = N_{L|Q}(a) \)

by definition (see Def 2.28). Moreover, \(\left| \det(A) \right| = [R : I] \). \(\square \)

Prop 8.24

The ideal norm is multiplicative: \(N(\mathfrak{I} \mathfrak{J}) = N(\mathfrak{I}) N(\mathfrak{J}) \).

Proof:

By ideal factorization (\(R \) is Dedekind), it suffices to show that if \(\mathfrak{I} = \mathfrak{p}_1^{\alpha_1} \cdots \mathfrak{p}_n^{\alpha_n} \), then \(N(I) = N(\mathfrak{P}_1)^{\alpha_1} \cdots N(\mathfrak{P}_n)^{\alpha_n} \).

By the Chinese Remainder Theorem we have

\[R/I \cong \prod_{i=1}^n R/\mathfrak{P}_i^{\alpha_i} \]

It is thus sufficient to show the claim for \(I = \mathfrak{P}^\mu \).

We have a chain

\[\mathfrak{P} \supseteq \mathfrak{P}^2 \supseteq \cdots \]

Note that \(\mathfrak{P}^{\mu+1} = \mathfrak{P}^\mu \) by uniqueness of factorization.

Each quotient \(\mathfrak{P}^{\mu}/\mathfrak{P}^{\mu+1} \) is an \(R/\mathfrak{P} \)-vector space.
Claim: \(\dim_{R/p} \mathbb{P}^i/p^i \mathbb{H} = 1 \) (general fact for Dedekind domains)

Proof: Let \(x \in p^i / p^i \mathbb{H} \). Let \(\mathfrak{J} := (x) + p^i \mathbb{H} \). Then \(p^i \mathbb{H} \subset \mathfrak{J} \subset p^i \mathbb{H} \).

\[\Rightarrow \mathfrak{J} = \mathbb{P}^i \mathbb{H} \Rightarrow \mathbb{P}^i \mathbb{J} = R \text{ since } \mathbb{P} \text{ maximal} \Rightarrow \mathfrak{J} = p^i \mathbb{H} \]

\(\Rightarrow x \text{ spans } p^i / p^i \mathbb{H} \).

So, \(p^i / p^i \mathbb{H} \cong R/p \) as \(R/p \)-vector spaces, hence

\[N(p^i) = [R : p^i] = [R : \mathbb{P}] [\mathbb{P} : p^i] \cdots [p^i : p^i] = |R/p|^\mathfrak{P} = N(p)^\omega. \]

Multiplicativity allows us to extend the ideal norm to a group morphism

\[N : \mathbb{I}_R \to \mathbb{R}_+^* \]