Lemma 2.42 If $K \subseteq L$ is separable and has a basis of the form $1, \Theta_1, \ldots, \Theta^{n-1}$ (e.g., if $L=K(\Theta)$), then
\[\det_{K}(1, \Theta, \ldots, \Theta^{n-1}) = \prod_{i<j} (\Theta_i - \Theta_j)^2 \neq 0, \]
where $\Theta_i = \sigma_i(\Theta)$ and σ_i are the K-morphisms $L \to L$, $L \cong K$ algebraically closed.

Proof:
\[\det_{K}(1, \Theta, \ldots, \Theta^{n-1}) = \det \left(\sigma_i(\Theta) \right)^2 \]
\[= \det \left(\Theta_i \right)^2 \]
\[= \prod_{i<j} (\Theta_i - \Theta_j)^2 \]

\[\square \]

Cor 2.43 The trace form of a finite separable extension is always non-degenerate.

Proof: $L=K(\Theta)$ by primitive element theorem.

\[\square \]
3. Ring of integers

3.1 Integral elements

Motivation. Since \(\mathbb{Q} \subset \mathbb{Q}(i) \) is finite, it is algebraic, hence every \(\alpha \in \mathbb{Q}(i) \) is a root of a monic polynomial \(f \in \mathbb{Q}[X] \). How can we characterize \(\mathbb{Z}[i] = \mathbb{Q}(i) \)?

Lemma 3.1 \(\mathbb{Z}[i] \) consists precisely of the elements \(\alpha \in \mathbb{Q}(i) \) which are a root of a monic polynomial \(f \in \mathbb{Z}[X] \).

Proof: Let \(\alpha = a + bi \in \mathbb{Z}[i] \), i.e. \(a, b \in \mathbb{Z} \). Then \(\alpha \) is a root of

\[
\mathbb{Z}[X] \ni f = x^2 + cx + d, \quad c = -2a, \quad d = a^2 + b^2
\]

Conversely, let \(\alpha = a + bi \in \mathbb{Q}(i) \) and \(f(\alpha) = 0 \) for some \(f \in \mathbb{Z}[X] \). It follows from Gauss's Lemma that every monic factor of \(f \) in \(\mathbb{Q}[X] \) also lies in \(\mathbb{Z}[X] \).

\(\alpha \) is of degree \(\leq 2 = \dim_{\mathbb{Q}} \mathbb{Q}(i) \). If \(\deg \alpha = 1 \) \(\Rightarrow \alpha \in \mathbb{Z} \).

If \(\deg \alpha = 2 \), then \(\alpha = x^2 + cx + d, c, d \in \mathbb{Z} \).

\(\alpha(\alpha) = 0 \Rightarrow (a + ib)^2 + c(a + ib) + d = 0 \)

\[
= (a^2 - b^2 + ca + db) + (2ab + bc)i = 0
\]

\[
= a^2 - b^2 + ca + db = 0 \quad \text{and} \quad 2ab + bc = 0
\]

\[
c = -2a \quad \Rightarrow \quad d = a^2 + b^2 \\
\Rightarrow \quad 4d = 4a^2 + 4b^2 = (2a)^2 + (2b)^2 \quad \text{in} \quad \mathbb{Z} \\
\Rightarrow \quad (2b)^2 \in \mathbb{Z} \Rightarrow 2b \in \mathbb{Z} \quad \text{in} \quad \mathbb{Z}
\]

Now, \((2a)^2 + (2b)^2 = 4d \equiv 0 \text{ mod } 4 \Rightarrow (2a)^2 \equiv (2b)^2 \equiv 0 \text{ mod } 4 \)

\(\Rightarrow 4a^2 \equiv 0 \Rightarrow a^2 \equiv 0 \Rightarrow a \in \mathbb{Z} \quad \text{or} \quad \mathbb{Z} \). \(\square \)
This brings us to the following definition:

Def. Let $R \subseteq S$ be an extension of rings. An element $x \in S$ is integral over R if $f(x)$ for some monic $f \in R[X]$. The integral closure of R in S is

$$R_{\text{int}}S := \{x \in S \mid x \text{ integral over } R\}.$$

The extension $R \subseteq S$ is integral if each $x \in S$ is integral over R, i.e., $S = R_{\text{int}}S$.

Example:

a) $K \subseteq \mathbb{L}$ a field extension. Then \mathbb{L} is integral over \mathbb{K}, so $\mathbb{K} = R_{\text{int}}\mathbb{L}$.

b) Every R is integral over R, so $R = R_{\text{int}}R$.

c) $\mathbb{Z}[\sqrt{2}] = \mathbb{Z}$ by Gauss Lemma.

d) $\mathbb{Z}[\sqrt{-1}] = \mathbb{Z}[i]$ by Lemma 3.1.

e) Be careful! $\frac{1+\sqrt{5}}{2} \in \mathbb{Q}(\sqrt{5})$ is integral over \mathbb{Z}: it is a root of $f = x^2 - x + 1 \in \mathbb{Z}[X]$

$$(\frac{1+\sqrt{5}}{2})^2 - (\frac{1+\sqrt{5}}{2}) + 1 = \frac{1 + 2\sqrt{5} + 5}{4} - \frac{2 + 2\sqrt{5}}{4} + \frac{4}{4}$$

$$= -\frac{4}{4} + \frac{4}{4} = 0.$$

It is thus not so obvious how $R_{\text{int}}S$ looks like. Let's prove some general facts.

We will shortly see that $R_{\text{int}}S$ is a ring.

It's best to view this in terms of modules.
3.2 Modules (review)

Let R be a commutative ring. "Vector space" over R?

Def. An R-module is an abelian group $(V, +)$ equipped with an action $R \times V \to V$ of R such that

- $(r(v + v')) = rv + rv'$
- $((r + r')v) = rv + r'v$
- $(rr')v = r(r'v)$
- $1v = v$

Ex.

a) K a field then K-module $\equiv K$-vector space

b) A an abelian group $\equiv A$ a Z-module:

$$n(a) = a + a + \ldots + a$$

$c) R$ is an R-module: $r.r' = rr'$ (acts on itself)

d) If $R \subseteq S$ is a ring extension, S is an R-module: $1.S = SS$

e) V a $K[X]$-module means: V a K-vector space and X acts by an endomorphism $V \to V$

Def. A subset $U \subseteq V$ is a submodule if $ru \in U \forall u \in U, r \in R$ (stably under the action).

Ex.

a) K a field: submodule \equiv subspace

b) $I \subseteq R$ ideal \equiv submodule of R

Def. $U \subseteq V$ a subset. There is a unique smallest submodule of V containing U, namely

$$R.U := \bigcap_{U \subseteq V \text{ submodule}} U = \left\{ \sum_{i=1}^{l} r_i u_i \mid r_i \in R, u_i \in U, l \in \mathbb{N}, \sum_{i=1}^{l} |r_i| < \infty \right\}$$

- a K-linear combination of elts of U.

This is the submodule generated by \(U \).

Def. An \(R \)-module \(V \) is **finitely generated** if \(V = R \cdot U \) for a finite set \(U \subset V \).

Ex.

a) For \(U \)-vector spaces, finitely generated \(\iff \) finite dimensional.

b) \(R \) as an \(R \)-module is finitely generated: \(R = R \cdot 1 \).

c) Every ideal in \(KH \) is a finitely generated \(KH \)-module: it is generated by a single element.

WARNING

Submodules of \(R \)-modules do not have to be finitely generated!

Ex.

Let \(R := KH \langle x_1, x_2, x_3, \ldots \rangle \) \(\subseteq \) \(R \) \(\subseteq \) \(R \) \(\subseteq \) \(\cdots \) infinitely many variables

Then \(R \) is a \(R \)-module by **Ex.**

BUT: \(I = (x_1, x_2, x_3, \ldots) \subset R \) is an ideal which is not finitely generated!

Def. An **\(R \)-algebra** is a ring \(A \) which is also an \(A \)-module such that

\[
(r(a))a' = r(aa') \quad \forall r \in R, a, a' \in A.
\]

\[
1_R \cdot a = a = a \cdot 1_R.
\]

Ex.

a) The polynomial ring \(R[x] \) is an \(R \)-algebra.

b) \(R \subseteq S \) a ring extension \(\Rightarrow \) \(S \) is an \(R \)-algebra.
c) Every ring R is a \(\mathbb{Z} \)-algebra: \(n \cdot r = \underbrace{r + \ldots + r}_{n \text{ times}} \)

\[\text{Def.} \quad \text{A subalgebra of} \ A \text{ is a subring \(U \) which is also an} \ R \text{-submodule} \]
\(\Rightarrow U \text{ naturally an} \ R \text{-algebra} \)

\[\text{Def.} \quad \text{A -} \ R \text{-algebra,} \ U \subset A \text{ subset. Then} \]
\[R[U] := \bigcap A^1 \quad = \text{finite} \ R \text{-linear combinations of products of finitely many elts of} \ U \]

is the subalgebra generated by \(U \).

\[\text{Def.} \quad A \text{ is called} \ \text{finitely generated as} \ R \text{-algebra of} \ A = R[U] \text{ for} \ U \text{ finite.} \]

\[\text{Remark.} \quad A \text{ F.g. as} \ R \text{-module} \Rightarrow \text{F.g. as} \ R \text{-algebra. Not conversely:} \]

polynomial ring \(\mathbb{Z}[x] \) is F.g. as \(\mathbb{R} \)-algebra but not as \(\mathbb{R} \)-module.

\[\text{Ex.} \quad \mathbb{Q}(x) \text{ is a} \ \mathbb{Z} \text{-algebra. Then} \mathbb{Z}[i] = \text{subalgebra generated by} \ i, \]
\[\mathbb{Z}[i] = \{ a + ib \mid a, b \in \mathbb{Z} \} \]

Note: the \(\mathbb{Z} \)-algebra \(\mathbb{Z}[i] \) is a finitely generated \(\mathbb{Z} \)-module!

3.3 Integral elements form a ring

\[\text{Thm.} \quad R = S \text{ a ring extension,} \ \alpha \in S. \ TFAE \]

a) \(\alpha \) is integral over \(R \)

b) \(R[\alpha] \subset S \) is a finitely generated \(R \)-module

c) There is an \(R \)-subalgebra \(S' \) of \(S \) with \(\alpha \in S' \) and \(S' \) finitely generated \(R \)-module.

\[\text{Proof:} \quad a \Rightarrow b: \text{ let} \ f = x^n + r_{n-1} x^{n-1} + \ldots + r_0 \in R[U] \text{ with} \ f(\alpha) = 0 \]
\[\Rightarrow \alpha^n = - \sum_{i=0}^{n-1} r_i \alpha^i \in R \cdot \{ 1, \alpha, \ldots, \alpha^{n-1} \} \subset S \Rightarrow R[\alpha] = R[1, \alpha, \alpha^{n-1}] \]
Since $\alpha \in S'$ and S' a ring $\Rightarrow \alpha x_i \in S'$ bi.

Since $S' = R[x_1, \ldots, x_n]$ here

$$\alpha x_i = \sum_{j=1}^{n} r_{ij} x_j, \quad r_{ij} \in R$$

Let $M := (r_{ij})_{i,j} \in \text{Mat}_n(R)$, $V = (\alpha x_i) \in (S')^n$.

Consider S' as an $R[X]$-module with X acting by multiplication by α, so $X \alpha := \alpha x$. $\Rightarrow X v = (x_{\alpha i}) \cdot (\alpha x_i)$.

Then $(X \cdot I_n - M) v = 0$

Multiply with the adjugate matrix $\Rightarrow \det (X I_n - M) \cdot v = 0$ $= : f \in R[X]$ monic polynomial

$\Rightarrow f \cdot \alpha x_i = 0 \forall i$

\Rightarrow Since $S' = R[x_1, \ldots, x_n]$, $f = 0 \forall \alpha \in S \Rightarrow f \cdot 1 = 0$

Hence, writing $f = \sum r_i x_i \Rightarrow 0 = f \cdot 1 = \sum r_i \alpha x_i$

$\Rightarrow \alpha$ integral.

\square

Corollary 3.20: If $x_1, \ldots, x_n \in S$ are integral over R, then $R[x_1, \ldots, x_n] \subseteq S$ is a R-module.

Proof: By induction on n. $n = 1$ is theorem 3.19.

$n > 1$: Let $S' := R[x_1, \ldots, x_{n-1}]$. By induction, S' is R-module.

An integral over R is integral over $S' \supseteq R$.

\[S'' = S'[x'] \text{ is a } S\text{-module.} \]

Since \(S' \) is a \(R \)-module and \(S'' \) is also a \(S\text{-module,} \)

Corollary: \(\text{Rint} S \) is an \(R\)-subalgebra of \(S \)

Proof: Let \(\alpha, \beta \in \text{Rint} S \) and \(\alpha' \in S \). \(R\)-module by \(\text{Rint} S \) is \(R\)-module by \(C_0 \Rightarrow x' \)

Cor: \(x' \rightarrow x' \cdot \alpha \), contained in an \(R\)-subalgebra of \(S \) that is \(\text{fg} \Rightarrow \alpha + \alpha', \alpha x', \alpha x' \text{ integral by Thm 3.19} \)

Def. 3.22: If \(L \) is a number field, then \(\mathcal{O}_L := \text{int} L \) is called the ring of integers in \(L \).