Commutative Algebra

Exercise Sheet 1

Due date: 3 November 2020, 9:00 am. To be handed in digitally in OLAT.¹

Exercise 1. An **idempotent** in a ring A is an element $e \in A$ with $e^2 = e$. Show the following:

- (a) $Ae = \{ae \mid a \in A\} \subseteq A$ is a ring with the addition and multiplication from A. But it is not a subring unless e = 1.
- (b) 1 e is an idempotent as well.
- (c) As a ring, A is isomorphic to the product $Ae \times A(1-e)$.

Exercise 2 (Chinese Remainder Theorem). Let A be a ring and let I_1, \ldots, I_n be ideals in A. Prove the following:

(a) The quotient maps $q_i: A \to A/I_i$ taken together induce a ring morphism

$$\varphi: A \to \prod_{i=1}^n A/I_i$$

- (b) φ is injective if and only if $\bigcap_{i=1}^{n} I_i = 0$.
- (c) φ is surjective if and only if the I_i are mutually **coprime**, i.e. $I_i + I_j = A$ for all $i \neq j$.
- (d) If the I_i are mutually coprime, then φ induces a ring isomorphism

$$A/\bigcap_{i=1}^{n} I_i \cong \prod_{i=1}^{n} A/I_i$$

Moreover,

$$\bigcap_{i=1}^n I_i = \prod_{i=1}^n I_i \; .$$

Exercise 3. Let A be a ring. An element $x \in A$ is called **nilpotent** if there is $n \in \mathbb{N}$ with $x^n = 0$. Show the following:

- (a) If $u \in A$ is a unit and $x \in A$ is nilpotent, then u + x is a unit.
- (b) If $x, y \in A$ are nilpotent, so is x + y.

Exercise 4. (a) Let R be a ring. A polynomial

$$f = r_0 + r_1 X + \dots + r_n X^n \in R[X]$$

is a unit if and only if r_0 is a unit and all r_1, \ldots, r_n are nilpotent. Exercise 3 might be helpful for this.

(b) Determine the units in $\mathbb{Z}[X]$.

¹Or if OLAT does not work as e-mail at schmitt@mathematik.uni-kl.de.