Commutative Algebra

Exercise Sheet 12

Due date: 2 February 2021, 9:00 am.

Exercise 1. Let K be a field and let $A := K[X_1, X_2]/(X_1^2X_2 - 1)$. Find a Noether normalization of A, that is, find an algebraically independent subset $\{Y_1, \ldots, Y_d\} \subseteq A$ over K such that the extension $K[Y_1, \ldots, Y_d] \subseteq A$ is finite.

Hint: There are at least two ways to approach this: you can follow the construction in the proof of Theorem 8.3.9, but looking at a plot of the vanishing set $X_1^2X_2 - 1 = 0$ might also help.

Exercise 2. Let A be a noetherian local ring and let x_1, \ldots, x_c be a regular sequence. Show that any permutation of x_1, \ldots, x_c is a regular sequence.

Exercise 3. Let K be a field.

- (a) Show that $K[X_1, \ldots, X_n]$ is regular in the origin (X_1, \ldots, X_n) , that is, that the localization $K[X_1, \ldots, X_n]_{(X_1, \ldots, X_n)}$ is a regular local ring.
- (b) Show that if A is a noetherian regular local ring with maximal ideal M and $0 \neq x \in M^2$, then A/(x) is not regular.

Exercise 4. Let K be a field of characteristic $\neq 2, 3$ and let $A := K[X_1, X_2]/(X_1^3 - X_2^2)$.

- (a) Show that A is regular in $M := (X_1 1, X_2 1)$. *Hint:* Prove that MA_M is principal.
- (b) Show that A is not regular in the origin $M := (X_1, X_2)$. Hint: Exercise 3.