Commutative Algebra

Exercise Sheet 2

Due date: 10 November 2020, 9:00 am.

Exercise 1. Let R be a ring.

(a) Let Λ be a set and let $\Lambda' \subseteq \Lambda$ be a subset. There is a canonical *R*-algebra isomorphism

 $R[(X_{\lambda})_{\lambda \in \Lambda}] \cong \left(R[(X_{\lambda})_{\lambda \in \Lambda \setminus \Lambda'}] \right) [(X_{\lambda})_{\lambda \in \Lambda'}].$

Comment: This is as easy as it looks.

- (b) The ring R is an integral domain if and only if the polynomial ring $R[X_1, \ldots, X_n]$ in finitely many variables is an integral domain.
- (c) The polynomial ring R[X] is a principal ideal domain if and only if R is a field.

Exercise 2. Let K be a field.

- (a) The ideal (X_1, \ldots, X_r) is a prime ideal in $K[X_1, \ldots, X_n]$ for each $1 \le r \le n$.
- (b) Let $p \in K[X]$ and let $\varphi : K[X_1, X_2] \to K[X]$ be the morphism defined by $X_1 \mapsto X$ and $X_2 \mapsto p$, i.e. $\varphi(f) = f(X, p)$. Show that ker $\varphi = (X_2 - p(X_1))$ and conclude that this is a prime ideal in $K[X_1, X_2]$.
- (c) Show that $(X_1 + X_2 1) \subseteq K[X_1, X_2]$ is a prime ideal.
- **Exercise 3.** (a) A ring A has a unique maximal ideal if and only if $A \setminus A^{\times}$ is an ideal in A.
 - (b) Find an example of a ring as in (a), where $A \setminus A^{\times}$ is not $\{0\}$, i.e. which is not a field.

Exercise 4. (a) Any prime ideal $P \neq 0$ in a principal ideal domain is maximal.

(b) Let K be a field. Find a prime ideal in K[X, Y] which is not maximal. Do the same for $\mathbb{Z}[X]$.