Commutative Algebra

Exercise Sheet 3

Due date: 17 November 2020, 9:00 am.

- **Exercise 1.** (a) Show that a map $f: X \to Y$ between topological spaces is continuous if and only if for any open subset $V \subseteq Y$ the preimage $f^{-1}(V) \subseteq X$ is open.
 - (b) Let A be a ring and let $I \leq A$ be an ideal. The topological spaces Spec(A/I) and V(I) are homeomorphic, i.e. isomorphic as topological spaces.

Exercise 2. Let A be a ring.

(a) The sets

$$\mathcal{D}(f) := \operatorname{Spec}(A) \setminus \mathcal{V}(f)$$

define a basis for the Zariski topology on Spec(A), i.e. every open subset is a union of such sets.

(b) The topological space Spec(A) is quasi-compact, i.e. every open cover of Spec(A) has a finite subcover.

Exercise 3. Let A be a ring.

- (a) Show that $\sqrt{I^n} = \sqrt{I}$ for any $I \leq A$.
- (b) Show that $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$ for any $I, J \leq A$.
- (c) Find an example where $\sqrt{I+J} \neq \sqrt{I} + \sqrt{J}$.

Exercise 4. Let K be a field. Determine the following radicals.

- (a) $\sqrt{(X^3 X^2 X + 1)}$ in K[X].
- (b) $\sqrt{(X_1^2 X_2 X_3, X_1(1 X_3))}$ in $K[X_1, X_2, X_3]$.

Hint: Use Corollary 2.6.5.