Commutative Algebra

Exercise Sheet 5

Due date: 1 December 2020, 9:00 am.

Exercise 1. (a) Show that for any two submodules U, U' of an A-module V there is a canonical short exact sequence

 $0 \longrightarrow U \cap U' \longrightarrow U \oplus U' \longrightarrow U + U' \longrightarrow 0 \; .$

(b) The cokernel of an A-module morphism $f: V \to W$ is defined as

 $\operatorname{Coker} f := W / \operatorname{Im} f .$

Show that there is a canonical exact sequence

$$0 \longrightarrow \operatorname{Ker} f \longrightarrow V \xrightarrow{f} W \longrightarrow \operatorname{Coker} f \longrightarrow 0 .$$

Exercise 2. (a) Show that the functor $\operatorname{Hom}_A(V, -) : A\operatorname{-Mod} \to A\operatorname{-Mod}$ is left-exact.

(b) Show that the functor $\operatorname{Hom}_A(V, -) : A\operatorname{-Mod} \to A\operatorname{-Mod}$ is in general not exact. *Hint:* Consider $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, -)$ and the quotient map $q : \mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$.

Exercise 3. Prove that the following are equivalent for an A-module P:

- (a) P is projective.
- (b) P is a direct summand of a free A-module, i.e. there is an A-module Q such that $P \oplus Q \simeq A^{(\Lambda)}$ for some Λ .
- (c) Every short exact sequence of the form

 $0 \longrightarrow V' \longrightarrow V \xrightarrow{g} P \longrightarrow 0$

splits, i.e. there is an A-module morphism $s: P \to V$ such that $g \circ s = id_P$ (such an s is called a section of g).⁽¹⁾

(d) For every morphism $h: P \to W$ and every surjective morphism $f: V \to W$ there is a morphism $\tilde{h}: P \to V$ such that the diagram

commutes.

⁽¹⁾You may use the following fact without proving it: a short exact sequence

 $0 \longrightarrow V' \longrightarrow V \longrightarrow V'' \longrightarrow 0$

splits if and only if $V \simeq V' \oplus V''$.

Exercise 4. (a) Show that projective modules are flat.

- (b) Show that there are projective modules which are not free. *Hint:* Let A := Z/6Z and consider the A-module Z/2Z.
- (c) Show that there are flat modules which are not projective.⁽²⁾
 Hint: Consider the Z-module Q.

⁽²⁾You may use the following fact without proving it: over a principal ideal domain submodules of free modules are free.