Commutative Algebra

Exercise Sheet 7

Due date: 15 December 2020, 9:00 am.

Exercise 1 (Five lemma). Consider a commutative diagram

$$V \xrightarrow{f} W \xrightarrow{g} X \xrightarrow{h} Y \xrightarrow{j} Z$$

$$\downarrow_{l} \simeq \downarrow_{m} \qquad \downarrow_{n} \simeq \downarrow_{p} \qquad \qquad \downarrow_{q}$$

$$V' \xrightarrow{f'} W' \xrightarrow{g'} X' \xrightarrow{h'} Y' \xrightarrow{j'} Z'$$

of module morphisms, where

- (i) the two rows are exact;
- (ii) m and p are isomorphism;
- (iii) l is surjective;
- (iv) q is injective.

Show that n is an isomorphism.

- **Exercise 2.** (a) Show that projectivity of finitely presented modules is a local property.
 - (b) Show that for a module V over an arbitrary ring A the following are equivalent:
 - (i) V is finitely presented and flat.
 - (ii) V is finitely generated and projective.

Exercise 3. The aim of this exercise is to construct a finitely generated flat module which is not projective. You can achieve a maximum of **8 points** instead of the usual 4 points with this exercise.

(a) Prove Schanuel's Lemma: if

$$0 \longrightarrow K \longrightarrow P \xrightarrow{f} M \longrightarrow 0$$

and

$$0 \longrightarrow K' \longrightarrow P' \stackrel{f'}{\longrightarrow} M \longrightarrow 0$$

are short exact sequences of module morphisms over a ring A with P and P' projective, then there is an isomorphism

$$K' \oplus P \simeq K \oplus P'$$

Hint: consider $X := \{(p, p') \in P \oplus P' \mid f(p) = f'(p')\}$ and show that $X \simeq K' \oplus P$ and $X \simeq K \oplus P'$.

(b) Show that if A is a ring and V is a finitely presented A-module, then the kernel Ker f of a surjective morphism $f: W \twoheadrightarrow V$ from a finitely generated A-module W is finitely generated as well.

Hint: since W is finitely generated, there is a surjective morphism $g: A^k \to W$. From this you get an exact sequence $0 \longrightarrow K' \longrightarrow A^k \xrightarrow{f \circ g} V \longrightarrow 0$. Moreover, we have an exact sequence $0 \longrightarrow K \longrightarrow A^n \longrightarrow V \longrightarrow 0$ with K finitely generated since V is finitely presented. Now, use Schanuel's Lemma and note that $g(\operatorname{Ker}(fg)) = \operatorname{Ker} f$.

- (c) Consider the Z-module $A_0 := \bigoplus_{n \in \mathbb{N}} (\mathbb{Z}/2\mathbb{Z})$. With respect to component-wise addition and multiplication this is a ring without unit. But $A := \mathbb{Z} \oplus A_0$ becomes a ring with unit (1,0) with respect to component-wise addition and the multiplication defined by $(n, a_0) \cdot (n', a'_0) := (nn', na'_0 + n'a_0 + a_0a'_0)$. (You are supposed to show the facts about the units.)
- (d) Let $a := (2, 0) \in A$ and $V := (a) \leq A$. This is a finitely generated A-module. We have a short exact sequence $0 \longrightarrow \operatorname{Ann}_A(a) \longrightarrow A \xrightarrow{\varphi} V \longrightarrow 0$, where φ is multiplication by a. Show that the ideal $\operatorname{Ann}_A(V) \leq A$ is not finitely generated and conclude that V is not finitely presented.
- (e) Show that V is not projective.

Hint: can a finitely generated but not finitely presented module be projective?

(f) Show that V is flat.

Hint: show that V is locally flat, i. e. V_P is flat for all $P \in \text{Spec } A$. Treat the cases $A_0 \not\subseteq P$ and $A_0 \subseteq P$ separately.