Algebraic Geometry WS 2024/2025 RPTU Kaiserslautern–Landau

Exercise Sheet $1\frac{1}{2}$

Release: November 5, 2024

Exercises with numbers in brackets are taken from the book "An invitation to algebraic geometry" by Smith et. al. (2000).

Exercise 1 [1.3.1]. Let $F: V \to W$ be a morphism of affine algebraic varieties. Prove that F is continuous in the Zariski topology.

Exercise 2

- a. [1.3.2] Show that the twisted cubic V is isomorphic to the affine line by constructing an explicit isomorphism $\mathbb{A}^1 \to V$.
- b. Recall that we can consider the general linear group $GL(n, \mathbb{C})$ as an affine algebraic variety in \mathbb{C}^{n^2+1} . Show that the determinant det: $GL(n, \mathbb{C}) \to \mathbb{C}^{\times}$ is a morphism of affine algebraic varieties.

Exercise 3 [1.4.2]. Show that if $X \to Y$ is a surjective morphism of affine algebraic varieties, then the dimension of X is at least as large as the dimension of Y.

Exercise 4 [1.4.3]. Show that a hypersurface in \mathbb{A}^n is irreducible if and only if the defining equation F is a power of an irreducible polynomial G.