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Exercises with numbers in brackets are taken from the book “An invitation to algebraic geometry”
by Smith et. al. (2000).

Exercise 1 [2.3.1]. Show that under the V and I operators prime ideals correspond to irreducible
algebraic varieties. Conclude that the irreducible components of an affine algebraic variety 𝑉
correspond to the minimal prime ideals above I(𝑉 ).

Exercise 2 . Let 𝐹 : 𝑉 → 𝑊 be a morphism of affine algebraic varieties.

a. [2.5.1] Show that the pullback 𝐹 ♯ : C[𝑊 ] → C[𝑉 ] is injective if and only if 𝐹 (𝑉 ) is dense
in 𝑊 . We then say that 𝐹 is a dominant morphism.

b. [2.5.2] Show that the pullback 𝐹 ♯ : C[𝑊 ] → C[𝑉 ] is surjective if and only if F defines an
isomorphism between V and some algebraic subvariety of 𝑊 .

Exercise 3 [2.5.3]. If 𝐹 = (𝐹1, . . . , 𝐹𝑛) : A𝑛 → A𝑛 is an isomorphism, then show that the
Jacobian determinant
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is a nonzero constant polynomial.
(Entertaining fact: It is not known whether the converse is true. This is a famous open problem
known as the Jacobian conjecture.)

Exercise 4 [2.6.4]. Let 𝑅 := C[𝑥, 𝑦 ]/(𝑥2). Show that maxSpec(𝑅) is homeomorphic to A1.
What is your conclusion?


