Exercise Sheet 3

Release: November 12, 2024

Exercises with numbers in brackets are taken from the book "An invitation to algebraic geometry" by Smith et. al. (2000).

Exercise 1. Let *I* be a homogeneous ideal in $\mathbb{C}[x_0, \ldots, x_n]$.

- 1. Show that I is prime if and only if $fg \in I$ implies $f \in I$ or $g \in I$ for any homogeneous elements $f, g \in I$.
- 2. Show that \sqrt{I} is homogeneous as well.

Exercise 2. The notions of *irreducible*, *irreducible components*, and *dimension* that we introduced for affine varieties work verbatim for general topological spaces. Consider \mathbb{P}^n with the Zariski topology.

- 1. Let V be a non-empty projective variety in \mathbb{P}^n . Show that the following are equivalent: a) $V \subset \mathbb{P}^n$ is irreducible; b) the affine cone C(V) is irreducible; c) $\mathbb{I}(V)$ is a prime ideal.
- 2. Show that \mathbb{P}^n is irreducible.
- 3. Show that dim $(\mathbb{P}^n) = n$. [Hint: Prove that, in general, the dimension can be determined from an open cover.]
- 4. Show that the closure in \mathbb{P}^n of an irreducible affine variety is irreducible as well. [Hint: This, again, is a general topological fact.]

Exercise 3. Explicitly describe the projective closure in \mathbb{P}^3 of the twisted cubic curve: give both a parametric presentation and a presentation as a zero set of polynomials. [Hint: You do not have to be completely rigorous, use a limit argument as in class for the parabola.]

Exercise 4. Consider the affine variety $V = \mathbb{V}(y - x^2, z - xy) \subset \mathbb{A}^3$.

- 1. Show that V is the twisted cubic curve.
- 2. Show that $\mathbb{I}(V) = (y x^2, z xy)$.
- 3. Consider the homogenizations $wy x^2$ and wz xy and let $W \subset \mathbb{P}^3$ be the projective variety they define. Show that W is strictly larger than the projective closure \overline{V} of V.

Exercise 5 [3.3.2]. Consider the affine variety $V = \mathbb{V}(y - x^2, z^2 - 2xyz + y^3) \subset \mathbb{A}^3$.

- 1. Show that V is the twisted cubic curve.
- 2. Show that $\mathbb{I}(V) = (y x^2, z xy)$.
- 3. Consider the homogenizations $wy x^2$ and $wz^2 2xyz + y^3$ and let $W \subset \mathbb{P}^3$ be the projective variety they define. Show that W is equal to the projective closure \overline{V} of V but the ideal $(wy x^2, wz^2 2xyz + y^3)$ is not radical.