Exercise Sheet 1

Release: October 26, 2023
Deadline: November 2, 2023 by 10:00 a.m. Kaiserslautern

Each exercise is worth 4 points. You need a minimum of 50% of the total points of all exercise sheets by the end of the semester in order to obtain the "Schein". Submit your solutions via OLAT by uploading one pdf-file with all your solutions before 10:00 a.m. Kaiserslautern (unless explicitly stated differently).
You may submit your solution individually or in a group of at most 2 people. If you opt for a group submission, state the names of both individuals on the first page of the submitted pdf-file.
Exercises with numbers in brackets are taken from the book "An invitation to algebraic geometry" by Smith et. al. (2000).

Exercise 1 [1.1.2]. A subvariety of an affine algebraic variety $V \subset \mathbb{C}^{n}$ is an affine algebraic variety $W \subset \mathbb{C}^{n}$ that is contained in V.
(a) Show that the set $\mathbf{U}(n)$ of unitary $n \times n$ matrices is not an affine algebraic subvariety of $\mathbb{C}^{n^{2}}$. (Recall: A complex $n \times n$ matrix A is call unitary iff $\left(A^{*}\right)^{T}=A^{-1}$, where ${ }^{*}$ is complex conjugation and ${ }^{T}$ transposition.)
(b) Show, however, that $\mathbf{U}(n)$ can be described as the zero locus of a collection of polynomials with real coefficients in $\mathbb{R}^{n^{2}}$ that is, it is a real algebraic variety.

Exercise 2 [1.2.1]. Show that the union of two affine algebraic varieties in complex n-space is an affine algebraic variety.

Exercise 3 [1.2.2]. Show that the Zariski topology on \mathbb{A}^{2} is not the product topology on $\mathbb{A}^{1} \times \mathbb{A}^{1}$.

Exercise 4 [1.2.3].

(a) Show that the twisted cubic curve $V\left(x^{2}-y, x^{3}-z\right)$ consists of all points in \mathbb{A}^{3} of the form $\left(t, t^{2}, t^{3}\right)$, where $t \in \mathbb{C}$.
(b) Show that the twisted cubic curve is not contained in any affine hyperplane in \mathbb{A}^{3}.

