Prof. Dr. Ulrich Thiel

RPTU Kaiserslautern-Landau
Dr. Martin Bies

Exercise Sheet 4

Release: November 23, 2023
Deadline: November 30, 2023 by 10:00 a.m. Kaiserslautern

Each exercise is worth 4 points. You need a minimum of 50% of the total points of all exercise sheets by the end of the semester in order to obtain the "Schein". Submit your solutions via OLAT by uploading one pdf-file with all your solutions before 10:00 a.m. Kaiserslautern.
You may submit your solution individually or in a group of at most 2 people. If you opt for a group submission, state the names of both individuals on the first page of the submitted pdf-file.
Exercises with numbers in brackets are taken from the book "An invitation to algebraic geometry" by Smith et. al. (2000).

Exercise 1. Let I be a homogeneous ideal in $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$.

1. Show that I is prime if and only if $f g \in I$ implies $f \in I$ or $g \in I$ for any homogeneous elements $f, g \in I$.
2. Show that \sqrt{I} is homogeneous as well.

Exercise 2. The notions of irreducible, irreducible components, and dimension that we introduced for affine varieties work verbatim for general topological spaces. Consider \mathbb{P}^{n} with the Zariski topology.

1. Let V be a non-empty projective variety in \mathbb{P}^{n}. Show that the following are equivalent: a) $V \subset \mathbb{P}^{n}$ is irreducible; b) the affine cone $C(V)$ is irreducible; c) $\mathbb{I}(V)$ is a prime ideal.
2. Show that \mathbb{P}^{n} is irreducible.
3. Show that $\operatorname{dim}\left(\mathbb{P}^{n}\right)=n$. [Hint: Prove that, in general, the dimension can be determined from an open cover.]
4. Show that the closure in \mathbb{P}^{n} of an irreducible affine variety is irreducible as well. [Hint: This, again, is a general topological fact.]

Exercise 3. Explicitly describe the projective closure in \mathbb{P}^{3} of the twisted cubic curve: give both a parametric presentation and a presentation as a zero set of polynomials. [Hint: You do not have to be completely rigorous, use a limit argument as in class for the parabola.]

Exercise 4. Consider the affine variety $V=\mathbb{V}\left(y-x^{2}, z-x y\right) \subset \mathbb{A}^{3}$.

1. Show that V is the twisted cubic curve.
2. Show that $\mathbb{I}(V)=\left(y-x^{2}, z-x y\right)$.
3. Consider the homogenizations $w y-x^{2}$ and $w z-x y$ and let $W \subset \mathbb{P}^{3}$ be the projective variety they define. Show that W is strictly larger than the projective closure \bar{V} of V.

Exercise 5 [3.3.2]. Consider the affine variety $V=\mathbb{V}\left(y-x^{2}, z^{2}-2 x y z+y^{3}\right) \subset \mathbb{A}^{3}$.

1. Show that V is the twisted cubic curve.
2. Show that $\mathbb{I}(V)=\left(y-x^{2}, z-x y\right)$.
3. Consider the homogenizations $w y-x^{2}$ and $w z^{2}-2 x y z+y^{3}$ and let $W \subset \mathbb{P}^{3}$ be the projective variety they define. Show that W is equal to the projective closure \bar{V} of V but the ideal $\left(w y-x^{2}, w z^{2}-2 x y z+y^{3}\right)$ is not radical.
