Prof. Dr. Ulrich Thiel

RPTU Kaiserslautern-Landau
Dr. Martin Bies

Exercise Sheet 9

Release: January 18, 2024

Deadline: January 25, 2024 by 10:00 a.m. Kaiserslautern

Each exercise is worth 4 points. You need a minimum of 50% of the total points of all exercise sheets by the end of the semester in order to obtain the "Schein". Submit your solutions via OLAT by uploading one pdf-file with all your solutions before 10:00 a.m. Kaiserslautern.
You may submit your solution individually or in a group of at most 2 people. If you opt for a group submission, state the names of both individuals on the first page of the submitted pdf-file.
Exercises with numbers in brackets are taken from the book "An invitation to algebraic geometry" by Smith et. al. (2000).

Exercise 1 (5.4.1).
Fix an irreducible conic C in \mathbb{P}^{2}. Show that the set of lines in \mathbb{P}^{2} that fail to meet the conic in exactly two distinct points is a closed subvariety of the Grassmannian of all lines in $\mathbb{P}^{2}, \operatorname{Gr}(2,3)$.

Exercise 2.

Give explicit equations for $\operatorname{Gr}(2,4)$. The number of your equations should be minimal.
Exercise 3 Plücker embedding via exterior power.
a. State the definition of the k-th exterior power $\wedge^{k} \mathbb{C}^{n}$. Use the reference of your choice.
b. State the definition of the projectivization $\mathbb{P}\left(\wedge^{k} \mathbb{C}^{n}\right)$ of the vector space $\wedge^{k} \mathbb{C}^{n}$. Again, use the reference of your choice.
c. Show that $\mathbb{P}\left(\wedge^{k} \mathbb{C}^{n}\right) \cong \mathbb{P}^{\binom{n}{k}-1}$
d. Let $W=\operatorname{Span}\left(w_{1}, \ldots, w_{k}\right) \subset \mathbb{C}^{n}$ be a k-dimensional vector space and $\left\{e_{1}, \ldots, e_{n}\right\}$ a basis of \mathbb{C}^{n}. Let $w_{j}=\sum_{i=1}^{n} a_{j, i} e_{i}$. Verify the following identity:

$$
w_{1} \wedge \cdots \wedge w_{k}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left(\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \cdot a_{1, i_{\sigma(1)}} \cdot \ldots \cdot a_{k, i_{\sigma(k)}}\right) \cdot e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}
$$

In this expression, S_{k} is the symmetric group on k indices.
e. Describe the projective equivalence class $\left[w_{1} \wedge \cdots \wedge w_{k}\right] \in \wedge^{k} \mathbb{C}^{n}$. (Hint: Look for minors.)
f. Conclude that the following map is well-defined and agrees with the Plücker map as introduced in the lecture via minors:

$$
\iota: \operatorname{Gr}(k, n) \rightarrow \mathbb{P}\left(\wedge^{k} V\right), W=\operatorname{Span}\left(w_{1}, \ldots, w_{k}\right) \mapsto\left[w_{1} \wedge \cdots \wedge w_{k}\right]
$$

Exercise 4 (5.5.1).
Show that a subvariety of \mathbb{P}^{n} has degree one if and only if it is a linear subvariety.

