Character theory of finite groups
 RPTU Kaiserslautern-Landau

Exercise Sheet 1

Please submit your solution alone or with a (one!) partner in the postbox "Character Theory" on the ground floor, in the office of Dr. Tobias Metzlaff (48-424) or by mail at metzlaff@mathematik.uni-kl.de.

Exercises with numbers in brackets are taken from the book "Introduction to Representation Theory" by Etingof et. al. (2011).

Exercise 1 (2.3.15)

Let $V \neq 0$ be a finite dimensional representation of an algebra A. Show that it has an irreducible subrepresentation.

Exercise 2 (2.3.16)

Let A be an algebra over a field k. Recall that the center $Z(A)$ of A is the set of all elements $z \in A$ which commute with all elements of A.

1. Let V be an irreducible finite dimensional representation of A.
(a) Show that every $z \in Z(A)$ acts on V by multiplication by some scalar $\chi_{V}(z)$.
(b) Show that $\chi_{V}: Z(A) \rightarrow k$ is a homomorphism.
2. Let V be an indecomposable finite dimensional representation of A.
(a) Show that, for all $z \in Z(A)$, the operator $\rho(z)$ by which z acts on V, has only one eigenvalue λ.
(b) Show that λ is equal to the scalar $\chi_{V}(z)$ from 1 .
3. Does $\rho(z)$ in 2 . have to be a scalar operator?
(Remark: χ_{V} is called the central character of V.)
Exercise 3 (2.5.2)
Let $V \neq 0$ be a representation of A. We say that a vector $v \in V$ is cyclic if it generates V, that is, $A v=V$. A representation admitting a cyclic vector is said to be cyclic.
4. Show that V is irreducible if and only if all nonzero vectors of V are cyclic.
5. Show that V is cyclic if and only if it is isomorphic to A / I, where I is a left ideal in A.

Exercise 4 (2.7.4)

Let $A=k\langle x, y\rangle /\langle y x-x y-1\rangle$ be the Weyl algebra. If $\operatorname{char}(k)=0$, what are the finite dimensional representations of A ? What are the two-sided ideals in A ?
(Hint: For the first question, use that $\operatorname{Tr}(B C)=\operatorname{Tr}(C B)$ for all square matrices B, C. For the second, show that any nonzero two-sided ideal in A contains a nonzero polynomial in x.)

