Character theory of finite groups
 RPTU KAISERSLAUTERN-LANDAU

Prof. Dr. Ulrich Thiel
Dr. Tobias Metzlaff

Exercise Sheet 2
 FB Mathematik

Due date: Thursday, 16.5.2024, 12:00

Please submit your solution alone or with a (one!) partner in the postbox "Character Theory" on the ground floor, in the office of Dr. Tobias Metzlaff (48-424) or by mail at metzlaff@mathematik.uni-kl.de.

Exercises with numbers in brackets are taken from the book "Introduction to Representation Theory" by Pavel Etingof et. al. from 2011 (https://math.mit.edu/ etingof/repb.pdf).

Throughout, k denotes an algebraically closed field.

Exercise 5

Determine the indecomposable representations of the quiver A_{2}.
(Hint: There are three.)

Exercise 6 (2.11.3)
Let V, W, U be k-vector spaces. The terminology "natural" means without choosing a basis.

1. Construct a natural bijection between the bilinear maps from $V \times W$ to U and the linear maps from $V \otimes_{k} W$ to U.
2. Show that if B is a basis of V and C is a basis of W, then $\{v \otimes w \mid v \in B, w \in C\}$ is a basis of $V \otimes_{k} W$.
3. For the case that V is finite-dimensional, construct a natural isomorphism from $V^{*} \otimes W$ to $\operatorname{Hom}(V, W)$.

Exercise 7 (2.15.1)

Recall that a representation of $\mathfrak{s l}(2)$ is a vector space V with operators E, F, H, such that

$$
H E-E H=2 E, \quad H F-F H=-2 F, \quad E F-F E=H .
$$

In this exercise V is a finite dimensional representation over $k=\mathbb{C}$.
(i) Let λ be an eigenvalue of H with maximal real part and generalized eigenspace \bar{V}_{λ}. Show that E restricted to \bar{V}_{λ} is 0 .
(ii) Let $W \neq 0$ be a representation of $\mathfrak{s l}(2)$ and let $w \in W \backslash\{0\}$ with $E w=0$. For $n>0$, find a polynomial $P_{n}(x)$ of degree n, such that $E^{n} F^{n} w=P_{n}(H) w$.
(Hint: First compute $E F^{n} w$ and proceed by induction on n.)
(iii) Let $v \in \bar{V}_{\lambda}$ be a generalized eigenvector of H. Show that there exists $N>0$ with $F^{N} v=0$.
(iv) Show that H is diagonalizable on \bar{V}_{λ}.
(Hint: Take $N>0$, such that F^{N} restricted to \bar{V}_{λ} is 0 , and compute $E^{N} F^{N} v$ for $v \in \bar{V}_{\lambda}$.)
(v) Let $N_{v}>0$ be the smallest $N>0$ satisfying (iii). Show that $N_{v}-1=\lambda$.
(vi) Show that for all $N>0$, there exists an irreducible representation of $\mathfrak{s l}(2)$ of dimension N, which is unique up to isomorphism. Find a suitable basis of this representation to compute the matrices E, F, H.
(Hint: Take λ as in (i), $v \in V_{\lambda}$ an eigenvector of H and consider $v, F v, F^{2} v, \ldots$)

