CHARACTER THEORY OF FINITE GROUPS RPTU KAISERSLAUTERN-LANDAU

Due date: Thursday, 16.5.2024, 12:00 SS 2024

Please submit your solution alone or with a (one!) partner in the postbox "Character Theory" on the ground floor, in the office of Dr. Tobias Metzlaff (48-424) or by mail at metzlaff@mathematik.uni-kl.de.

Exercises with numbers in brackets are taken from the book "Introduction to Representation Theory" by Pavel Etingof et. al. from 2011 (https://math.mit.edu/ etingof/repb.pdf).

Throughout, *k* denotes an algebraically closed field.

Exercise 5

Determine the indecomposable representations of the quiver A_2 . (*Hint*: There are three.)

Exercise 6 (2.11.3)

Let *V*, *W*, *U* be *k*-vector spaces. The terminology "natural" means without choosing a basis.

- 1. Construct a natural bijection between the bilinear maps from $V \times W$ to U and the linear maps from $V \otimes_k W$ to U.
- 2. Show that if *B* is a basis of *V* and *C* is a basis of *W*, then $\{v \otimes w | v \in B, w \in C\}$ is a basis of $V \otimes_k W$.
- 3. For the case that *V* is finite–dimensional, construct a natural isomorphism from $V^* \otimes W$ to Hom(*V*, *W*).

Exercise 7 (2.15.1)

Recall that a representation of $\mathfrak{sl}(2)$ is a vector space V with operators E, F, H, such that

HE - EH = 2E, HF - FH = -2F, EF - FE = H.

In this exercise *V* is a finite dimensional representation over $k = \mathbb{C}$.

- (i) Let λ be an eigenvalue of *H* with maximal real part and generalized eigenspace \bar{V}_{λ} . Show that *E* restricted to \bar{V}_{λ} is 0.
- (ii) Let $W \neq 0$ be a representation of $\mathfrak{sl}(2)$ and let $w \in W \setminus \{0\}$ with Ew = 0. For n > 0, find a polynomial $P_n(x)$ of degree n, such that $E^n F^n w = P_n(H) w$. (*Hint*: First compute $EF^n w$ and proceed by induction on n.)
- (iii) Let $v \in \overline{V}_{\lambda}$ be a generalized eigenvector of *H*. Show that there exists N > 0 with $F^N v = 0$.
- (iv) Show that *H* is diagonalizable on \bar{V}_{λ} . (*Hint*: Take N > 0, such that F^N restricted to \bar{V}_{λ} is 0, and compute $E^N F^N v$ for $v \in \bar{V}_{\lambda}$.)
- (v) Let $N_v > 0$ be the smallest N > 0 satisfying (iii). Show that $N_v 1 = \lambda$.
- (vi) Show that for all N > 0, there exists an irreducible representation of $\mathfrak{sl}(2)$ of dimension N, which is unique up to isomorphism. Find a suitable basis of this representation to compute the matrices E, F, H.

(*Hint*: Take λ as in (i), $v \in V_{\lambda}$ an eigenvector of H and consider v, Fv, F^2v, \ldots)