Character theory of finite groups
 RPTU Kaiserslautern-Landau

Exercise Sheet 3

Prof. Dr. Ulrich Thiel

Due date: Thursday, 30.5.2024, 12:00
Dr. Tobias Metzlaff

Please submit your solution alone or with a (one!) partner in the postbox "Character Theory" on the ground floor, in the office of Dr. Tobias Metzlaff (48-424) or by mail at metzlaff@mathematik.uni-kl.de.

Exercises with numbers in brackets are taken from the book "Introduction to Representation Theory" by Pavel Etingof et. al. from 2011 (https://math.mit.edu/ etingof/repb.pdf).

Throughout, k denotes an algebraically closed field.

Exercise 8

Let $A=\operatorname{Mat}_{n}(k)$. Recall that A^{*} can be viewed as a left A-module using the duality defined by transposition. Show that A and A^{*} are isomorphic as A-modules.
(Hint: Use the trace map.)

Exercise 9

Let A be the algebra of upper triangular $n \times n$ matrices over k. For any i, let V_{i} be the 1-dimensional representation of A, where a matrix X acts by the scalar $X_{i i}$. Show that V_{1}, \ldots, V_{n} are the irreducible representations of A.

Exercise 10 (3.6.1)

Let $W \subseteq V$ be finite dimensional representations of A. Show that $\chi_{V}=\chi_{W}+\chi_{V / W}$.

Exercise 11 (3.9.5)

Let V be a finite dimensional vector space over $k=\mathbb{C}$ with a symmetric biliner form (\cdot, \cdot). The Clifford algebra $\mathrm{Cl}(V)$ is the quotient of the tensor algebra $T(V)$ by the ideal generated by the elements $v \otimes v-(v, v) 1, v \in V$.

Show that if (\cdot, \cdot) is nondegenerate, then $\mathrm{Cl}(V)$ is semisimple and has one irreducible representation of dimension 2^{n} when $\operatorname{dim}(V)=2 n$ and two such representations when $\operatorname{dim}(V)=2 n+1$. Then show that there is no other irreducible representation by finding a spanning set of $\mathrm{Cl}(V)$ with $2^{\operatorname{dim}(V)}$ elements.
(Hint: For the even case, take a basis $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ of V in which $\left(a_{i}, a_{j}\right)=\left(b_{i}, b_{j}\right)=$ $0,\left(a_{i}, b_{j}\right)=\delta_{i j} / 2$, and construct an irreducible representation of $\mathrm{Cl}(V)$ on $S:=\wedge\left(a_{1}, \ldots, a_{n}\right)$ in which b_{i} acts by differentiation with respect to a_{i}. For the odd case, take an additional basis element c with $\left(c, a_{i}\right)=\left(c, b_{i}\right)=0,(c, c)=1$ that acts on S by ± 1 and admits two nonisomorphic representations S_{+}, S_{-}.)

