CHARACTER THEORY OF FINITE GROUPS RPTU KAISERSLAUTERN-LANDAU

Prof. Dr. Ulrich Thiel Dr. Tobias Metzlaff Due date: Thursday, 30.5.2024, 12:00 SS 2024

Please submit your solution alone or with a (one!) partner in the postbox "Character Theory" on the ground floor, in the office of Dr. Tobias Metzlaff (48-424) or by mail at metzlaff@mathematik.uni-kl.de.

Exercises with numbers in brackets are taken from the book "Introduction to Representation Theory" by Pavel Etingof et. al. from 2011 (https://math.mit.edu/ etingof/repb.pdf).

Throughout, *k* denotes an algebraically closed field.

Exercise 8

Let $A = Mat_n(k)$. Recall that A^* can be viewed as a left A-module using the duality defined by transposition. Show that A and A^* are isomorphic as A-modules. (*Hint*: Use the trace map.)

Exercise 9

Let *A* be the algebra of upper triangular $n \times n$ matrices over *k*. For any *i*, let V_i be the 1–dimensional representation of *A*, where a matrix *X* acts by the scalar X_{ii} . Show that V_1, \ldots, V_n are the irreducible representations of *A*.

Exercise 10 (3.6.1)

Let $W \subseteq V$ be finite dimensional representations of *A*. Show that $\chi_V = \chi_W + \chi_{V/W}$.

Exercise 11 (3.9.5)

Let *V* be a finite dimensional vector space over $k = \mathbb{C}$ with a symmetric biliner form (\cdot, \cdot) . The **Clifford algebra** Cl(*V*) is the quotient of the tensor algebra *T*(*V*) by the ideal generated by the elements $v \otimes v - (v, v)$, $v \in V$.

Show that if (\cdot, \cdot) is nondegenerate, then Cl(V) is semisimple and has one irreducible representation of dimension 2^n when $\dim(V) = 2n$ and two such representations when $\dim(V) = 2n + 1$. Then show that there is no other irreducible representation by finding a spanning set of Cl(V) with $2^{\dim(V)}$ elements.

(*Hint*: For the even case, take a basis $a_1, ..., a_n, b_1, ..., b_n$ of *V* in which $(a_i, a_j) = (b_i, b_j) = 0$, $(a_i, b_j) = \delta_{ij}/2$, and construct an irreducible representation of Cl(V) on $S := \wedge (a_1, ..., a_n)$ in which b_i acts by differentiation with respect to a_i . For the odd case, take an additional basis element *c* with $(c, a_i) = (c, b_i) = 0$, (c, c) = 1 that acts on *S* by ±1 and admits two nonisomorphic representations S_+, S_- .)