Character theory of finite groups
 RPTU KAISERSLAUTERN-LandaU

Exercise Sheet 4 FB Mathematik

Due date: Thursday, 13.6.2024, 12:00

Please submit your solution alone or with a (one!) partner in the postbox "Character Theory" on the ground floor, in the office of Dr. Tobias Metzlaff ($48-424$) or by mail at metzlaff@mathematik.uni-kl.de.

Exercises with numbers in brackets are taken from the book "Introduction to Representation Theory" by Pavel Etingof et. al. from 2011 (https://math.mit.edu/ etingof/repb.pdf).

Throughout, k denotes an algebraically closed field and G a finite group.

Exercise 12 (4.1.4)

Let p be a prime number and G be a group of order p^{n}. Show that every irreducible representation of G over a filed k of characteristic p is trivial.

Exercise 13 (4.2.3)

Let $|G|=0$ in k. Show that the number of isomorphism classes of irreducible representations of G over k is strictly less than the number of conjugacy classes in G.
(Hint: For $P=\sum_{g \in G} g \in k[G]$, we have $P^{2}=0$ and the trace of P is 0 in every finite dimensional representation of G over k.)

Exercise 14

Read section 4.3 (3) on the irreducible complex representations of the quaternion group $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ with defining relations

$$
i=j k=-k j, \quad j=k i=-i k, \quad k=i j=-j i, \quad-1=i^{2}=j^{2}=k^{2} .
$$

Fill in the missing details. In particular, do the following.

1. Show that the conjugacy classes are $\{1\},\{-1\},\{ \pm i\},\{ \pm j\},\{ \pm k\}$.
2. Show that $Q_{8} / Z\left(Q_{8}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
3. Show that the 2-dimensional irreducible representation of Q_{8} is given by the Pauli matrices as claimed.

Exercise 15 (4.5.2)

Let V_{i} be the irreducible representations of G over $k=\mathbb{C}$ with characters χ_{i} and define

$$
\psi_{i}=\frac{\operatorname{dim}\left(V_{i}\right)}{|G|} \sum_{g \in G} \chi_{i}(g) \cdot g^{-1} \in \mathbb{C}[G] .
$$

1. Let $v \in V_{j}$. Show that $\psi_{i}(v)=\left\{\begin{array}{ll}v, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{array}\right.$.
(Hint: ψ_{i} acts on V_{j} as an intertwining operator, because it commutes with all elements of $\mathbb{C}[G]$. Apply Corollary 2.3.10.)
2. Show that the ψ_{i} are idempotent, that is, $\psi_{i} \psi_{j}=\left\{\begin{array}{ll}\psi_{i}, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{array}\right.$.
