CHARACTER THEORY OF FINITE GROUPS RPTU KAISERSLAUTERN-LANDAU

EXERCISE SHEET 6
FB MATHEMATIK

Prof. Dr. Ulrich Thiel Dr. Tobias Metzlaff Due date: Thursday, 11.07.2024, 12:00

SS 2024

Please submit your solution alone or with a (one!) partner in the postbox "Character Theory" on the ground floor, in the office of Dr. Tobias Metzlaff (48-424) or by mail at metzlaff@mathematik.uni-kl.de.

Exercises with numbers in brackets are taken from the book "Introduction to Representation Theory" by Pavel Etingof et al from 2011 (https://math.mit.edu/~etingof/reprbook.pdf).

Exercise 20

Show that \mathbb{A} is not Noetherian and that $\overline{\mathbb{Q}}$ is the quotient field of \mathbb{A} .

Exercise 21

Let G be a finite group and V be a complex finite-dimensional representation of G. Show that there is a finite field extension K of \mathbb{Q} and a basis of V so that the representing matrices of the group elements with respect to this basis have entries in K.

Remark: We say that "*V* can be defined over *K*".

Hint: First show that V can be defined over $\overline{\mathbb{Q}}$.

Exercise 22

Let *G* be a finite group and *V* be a complex finite-dimensional representation of *G* with character χ . Denote by $\mathbb{Q}(\chi)$ the field extension of \mathbb{Q} , which is generated by $\{\chi(g), g \in G\}$.

- 1. Show that $\{\chi(g), g \in G\} \subseteq \mathbb{A}$.
- 2. Show that, if *V* can be defined over a subfield $K \subseteq \mathbb{C}$, then $\mathbb{Q}(\chi) \subseteq K$.
- 3. Give an example of a representation V, which can not be defined over $\mathbb{Q}(\chi)$.

Exercise 23 (5.2.7)

Let *G* be a finite group and *V* be a complex irreducible representation of *G* with character χ and dim(V) \geq 2. Show that there exists an element $g \in G$ such that $\chi(g) = 0$.