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Welcome to the course “Character Theory of Finite Groups” in the summer term 2024!

What this course is about

Representation theory is the theory of “linearizing” algebraic structures by “representing their
elements as linear operators”. Character theory concerns the special (but extremely important)
case of representation theory of finite groups. Hence, the course is actually an introduction to
representation theory.

What we will do

We will follow a nice book titled “Introduction to representation theory” [1] by Pavel Etingof
(et. al.) from 2011 which is available for free at

https://math.mit.edu/~etingof/reprbook.pdf

The plan is to cover most of the material up to §5.6 (pp. 1–104).

Formalities

This module is worth 3.0 CP (plus additional 1.5 CP for the exercise classes). More information
is in the module handbook https://modhb.uni-kl.de/mhb/courses/MAT-40-25-K-4/.

The lectures are on Mondays, 10:00–11:30 in 48-538, starting on April 22, 2024. There are
two exceptions: May 20, 2024 (public holiday); July 8, 2024 (SFB-Begehung Aachen).

Exercise classes

The course is accompanied by fortnightly exercise classes on Fridays, 11:45–13:15, starting
on May 3, 2024. The tutor (and course assistant) is Dr. Tobias Metzlaff (48–424). In the weeks
of exercise classes, we will release an exercise sheet on Monday after the lecture. Please
submit your solutions alone or with a (one!) partner until the following Thursday by 12:00.
Then on Friday the sheet is dicussed in the exercise class. In order to obtain a certificate
(“Übungsschein”) for this class, you have to achieve at least 50% of the points on the exercise
sheets in total.

*https://ulthiel.com/math
†First version: April 15, 2024
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Workflow

To make sense of the workflow, I want to emphasize an important aspect. The effort for this
course is 3.0 CP. This amounts to 90h of time, split into 28h presence time (the lectures) and
62h self-study time. Note that the self-study time is more than 4h per week!

Consequently, each lecture will only be your first exposure to a certain amount of material I
want you to learn thoroughly by yourself afterwards (the self-study time). Shortly after each
lecture, you need to read the section for that lecture in this document and work through
everything I tell you before the next lecture. I will have discussed the material in class, but
usually not everything and not every detail. For each lecture I will assume you did your
homework and that you ask questions if you have difficulties. I will (try to) help you with
anything but you need to ask, and for this you need to work.

The best way to learn is tomake things personal: make your own notes, find (counter)examples,
ask questions, spot issues, look up other sources, work (and play) with the stuff!

For annotating PDF files (with your questions, comments, highlights), I recommend the cross-
platform open-source software Xournal++1. I recommend to first transform the file to have
larger margins with the tool pdf-crop-margins2 as follows:

$ pdf-crop-margins -o out.pdf -u -s -p 10 -a4 0 0 -300 0 eti.pdf
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1 Lecture 1 (April 22, 2024)

1.1 What you need to work through

Pages 1–10.

1.2 Keywords

The letter from Frobenius to Dedekind. Algebras. The free algebra. The group algebra. Mor-
phisms of algebras. Representations of algebras. A representation of an algebra is the same
as a module over the algebra. Regular representation. Representations of the free algebra.
Subrepresentations. Irreducible representations.

1.3 Things to think about

1. Do the introductory Dedekind–Frobenius problem for 𝑆3.

2. Why is a representation 𝐴→ End(𝑉 ) the same as a (left) 𝐴-module structure on 𝑉 ?

3. Maybe it is better to do Sections 2.4 (Ideals), Section 2.5 (Quotients), and Section
2.6 (Generators and relations) immediately after 2.2 (Algebras) to make the idea of a
representation clear right from the start. I want to summarize this key idea here again.

We said a representation of a 𝑘-algebra 𝐴 is a 𝑘-algebra morphism 𝜌 : 𝐴 → End(𝑉 ),
where 𝑉 is some vector space. So, to any element 𝑎 ∈ 𝐴 we assign a linear operator 𝜌(𝑎).
In other words, we represent 𝐴 by linear operators. Concretely, if 𝑉 is finite-dimensional,
then End(𝑉 ) ≃ Mat𝑛(𝑘), so we represent 𝑎 ∈ 𝐴 by a matrix. Since 𝜌 is an algebra
morphism, the collection {𝜌(𝑎) | 𝑎 ∈ 𝐴} of linear operators cannot be arbitrary. For
example, they must satisfy 𝜌(𝑎𝑏) = 𝜌(𝑎)𝜌(𝑏), the latter product being the composition
of linear operators. Also, 𝜌 needs to respect all the relations in 𝐴. To make clear what
this means, we use the free algebra.

The free algebra 𝑘⟨𝑥1, . . . , 𝑥𝑛⟩ satisfies the following universal property: if 𝐵 is any
𝑘-algebra and 𝑏1, . . . , 𝑏𝑛 ∈ 𝐵 are elements, there is a unique 𝑘-algebra morphism
𝜌 : 𝑘⟨𝑥1, . . . , 𝑥𝑛⟩ → 𝐵 such that 𝜌(𝑥𝑖 ) = 𝑏𝑖 . Notice that the (commutative) polynomial
ring 𝑘[𝑥1, . . . , 𝑥𝑛] satisfies the same property for commutative algebras 𝐵. Now, let 𝐴 be
any 𝑘-algebra. We say that a subset 𝒂 = {𝑎1, . . . , 𝑎𝑛} ⊂ 𝐴 generates 𝐴 if any element
𝑎 ∈ 𝐴 is a 𝑘-linear combination of products of elements of this subset:

𝑎 =
∑︁
𝜇∈𝑛*

𝛼𝜇𝜇(𝒂) , (1.1)

Here, 𝑛* is the set of all finite sequences of elements in our indexing set {1, . . . , 𝑛},
and if 𝜇 is such a sequence, then 𝜇(𝒂) :=

∏︀
𝑡∈N 𝑎𝜇(𝑡) denotes the product of the

corresponding elements in 𝒂. Moreover, 𝛼𝜇 ∈ 𝑘 , and all but finitely many of these
scalars are zero so that the expression is finite. The property that 𝒂 generates 𝐴 is
equivalent to the morphism 𝜌 : 𝑘⟨𝑥1, . . . , 𝑥𝑛⟩ → 𝐴, 𝑥𝑖 ↦→ 𝑎𝑖 , being surjective. Now, by
the homomorphism theorem (which for algebras works the same way as for rings), this
induces an isomorphism

𝑘⟨𝑥1, . . . , 𝑥𝑛⟩/𝐼
≃−→ 𝐴 ,

where 𝐼 is the kernel of 𝜌. Suppose we can write 𝐼 as the ideal generated by elements
𝑓1, . . . , 𝑓𝑚 ∈ 𝐴, so

𝑘⟨𝑥1, . . . , 𝑥𝑛⟩/⟨𝑓1, . . . , 𝑓𝑚⟩
≃−→ 𝐴 .
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Such an isomorphism is called a presentation of 𝐴 by generators and relations. It is by
no means unique! Notice that for simplicity I assumed that we can find finitely many
generators of 𝐴 and of the ideal 𝐼 . This is not true in general but the concept of the free
algebra, generators, and relations works the same way with infinitely many generators
and I will leave it to you to write this out formally.

Now, if we have such a presentation of 𝐴, then by the property of quotients, giving a
morphism 𝜌 : 𝐴→ 𝐵 into a 𝑘-algebra 𝐵 is the same thing as giving a morphism

𝜌 : 𝑘⟨𝑥1, . . . , 𝑥𝑛⟩ → 𝐵

such that 𝐼 ⊂ Ker(𝜌), i.e. 𝜌(𝑓𝑖 ) = 0 for all 𝑖 = 1, . . . , 𝑚. By the property of the free
algebra, giving a morphism 𝜌 : 𝑘⟨𝑥1, . . . , 𝑥𝑛⟩ → 𝐵 amounts to giving a collection 𝑏𝑖 :=
𝜌(𝑥𝑖 ) of elements of 𝐵. Write the 𝑓𝑖 in terms of the generators:

𝑓𝑖 =
∑︁
𝜇∈𝑛*

𝛼𝜇𝜇(𝒙) ,

where 𝒙 = {𝑥1, . . . , 𝑥𝑛}. Then 𝜌(𝑓𝑖 ) = 0 translates to

0 = 𝜌(𝑓𝑖 ) =
∑︁
𝜇∈𝑛*

𝛼𝜇𝜇(𝒃) ,

where 𝒃 = {𝑏1, . . . , 𝑏𝑛}. In other words, giving a morphism 𝐴→ 𝐵 amounts to giving
an element of 𝐵 for each generator of 𝐴, and these elements need to satisfy the same
relations as the generators. This observation applies in particular to representations,
where 𝐵 = End(𝑉 ).

Let us look at the concrete example from Section 2.1. Consider the 𝑘-algebra𝑈 generated
by three elements 𝑕, 𝑒, 𝑓 with relations

𝑕𝑒 − 𝑒𝑕 = 2𝑒 , 𝑕𝑓 − 𝑓 𝑕 = −2𝑓 , 𝑒𝑓 − 𝑓 𝑒 = 𝑕 .

Giving an𝑁-dimensional representation of 𝑈 amounts to giving three matrices𝐻,𝐸, 𝐹 ∈
Mat𝑁(𝐾) satisfying the same relations:

𝐻𝐸 − 𝐸𝐻 = 2𝐸 , 𝐻𝐹 − 𝐹𝐻 = −2𝐹 , 𝐸𝐹 − 𝐹𝐸 = 𝐻 .

Notice that finding such matrices amounts to solving a system of non-linear (in this
case quadratic) equations! This is a very hard problem!

2 Lecture 2 (April 29, 2024)

2.1 What you need to work through

Pages 11–19.

2.2 Keywords

Morphisms of representations (intertwining operator). Direct sum of representations. Indecom-
posable representations. The main task of representation theory. Schur’s lemma. Irreducible
representations of a commutative algebra. Representations of the polynomial ring 𝑘[𝑥 ]. The
group algebra. Ideals and quotients of algebras. Algebras defined by generators and relations.
The Weyl algebra.
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2.3 Things to think about

1. Review the classification of the irreducible and of indecomposable finite-dimensional
representations of the polynomial ring 𝑘[𝑥 ].

2. Review the proof of the basis of the Weyl algebra (Proposition 2.7.1). I told you to first
look at the action of 𝐴 on 𝐸[𝑡] defined by 𝑥𝑓 = 𝑡𝑓 and 𝑦𝑓 = d

d𝑡 . Repeat the proof
as in the book and notice that the final argument only works if the base field 𝑘 is of
characteristic zero. The proof in the book shows how to make the proof work in any
characteristic by considering a more general representation 𝐸.

3 Lecture 3 (May 6, 2024)

3.1 What you need to work through

Pages 19–30.

3.2 Keywords

Quivers and their representations. Representations of a quiver is the same as modules over
the path algebra. Gabriel’s theorem (Theorem 2.1.2). Lie algebras and their representations.
Representations of a Lie algebra is the same as modules over the universal enveloping algebra.
Representations of sl2(C) (Theorem 2.1.1).

3.3 Things to think about

1. Review the fact that representations of a quiver are the same as representations of the
path algebra.

2. Define the notion of homomorphism, direct sum, subrepresentation, irreducible, inde-
composable for quiver representations (see page 21) and notice that they coincide with
the notions for representations of the path algebra.

3. Study Remark 2.9.4: derivations as “infinitesimal version” of automorphisms.

4. Show that the adjoint representation of a Lie algebra is indeed a Lie algebra represen-
tation.

5. Review the fact that representations of a Lie algebra are the same as representations
of its universal enveloping algebra.

6. Notice Remark 2.9.3 (Ado’s theorem).

7. Study Remark 2.9.14 on the connection between Lie groups and Lie algebras.

8. Read the historical interlude in Section 2.10.

4 Lecture 4 (May 13, 2024)

4.1 What you need to work through

Pages 31–42.5. Skip the problems and problem sections 2.13–2.16.
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4.2 Keywords

Tensor products of vector spaces. Tensors of type (𝑚, 𝑛). Tensor algebra, symmetric algebra,
exterior algebra, universal enveloping algebra. Semisimple representations of an algebra. If 𝑉
is a irreducible representation of 𝐴, then End(𝑉 ) is a semisimple representation of 𝐴 (≃ 𝑛𝑉 ,
where 𝑛 = dim(𝑉 )). Description of the subrepresentations of a semisimple representation.

4.3 Things to think about

1. We discussed that 𝑉 * ⊗ 𝑉 ≃ End(𝑉 ) for a finite-dimensional 𝑘-vector space 𝑉 . More
generally, I mentioned (and it is given as an exercise on Sheet 2) that if 𝑉 is finite-
dimensional and 𝑊 is any vector space then 𝑉 * ⊗ 𝑊 ≃ Hom(𝑉,𝑊 ). I want to note
that this statement does not hold if 𝑉 is not finite-dimensional, see https://math.
stackexchange.com/a/573416.

2. Read about the Einstein summation convention for indices on page 32.

3. Consider a change of basis on a vector space 𝑉 , given by an invertible matrix. This
induces a change of basis of the dual bases of 𝑉 *. How does this look like? Now, derive
the general transformation rule for (the coefficients of) a tensor. The keywords are
covariance and contravariance. You can read more about this at https://en.wikipedia.
org/wiki/Covariance_and_contravariance_of_vectors and https://en.wikipedia.org/wiki/
Tensor. You can also read my notes https://ulthiel.com/math/wp-content/uploads/notes-
repository/Covariance-and-Contravariance_annotated.pdf.

4. Read Remark 2.11.4 on tensor products 𝑉 ⊗𝐴 𝑊 for a right 𝐴-module 𝑉 and a left 𝐴-
module𝑊 (why the left/right?). Notice that 𝑉 ⊗𝐴𝑊 has no natural 𝐴-module structure a
priori. But it has a natural left 𝐴-module structure if 𝑉 happens to have a left 𝐴-module
structure as well which is compatible with its right 𝐴-module structure, i.e. 𝑉 is an
𝐴-bimodule. This is discussed at length in Problem 2.11.6.

5. Do Exercise 2.11.5: if 𝐴 is an algebra over a field 𝐾 and 𝐿 is an extension field of 𝐾, then
𝐴𝐿 := 𝐿⊗𝐾 𝐴 is naturally an algebra over 𝐿. If 𝑉 is an 𝐴-module, then 𝑉 𝐿 := 𝐿⊗𝐾 𝑉 is
naturally an 𝐴𝐿-module. This process is called scalar extension.

6. Check that if 𝑉 is a (left)𝐴-module then End(𝑉 ) is a (left)𝐴-module as well via (𝑎𝑓 )(𝑣) =
𝑎𝑓 (𝑣) for 𝑓 ∈ End(𝑉 ), 𝑎 ∈ 𝐴, and 𝑣 ∈ 𝑉 . We used this in Example 3.1.2.

7. Review the proof that End(𝑉 ) ≃ 𝑛𝑉 for an 𝐴-module 𝑉 of dimension 𝑛 (Example 3.1.2).

8. Think deeply about what Proposition 3.1.4 is saying.

9. Work through the complete proof of Proposition 3.1.4. The proof could be given some
more details, I have discussed this in class.

5 Lecture 5 (May 27, 2024)

5.1 What you need to work through

Pages 42.5–48.
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5.2 Keywords

The density theorem. Representations of (products of) matrix algebras. Dual representations.
Opposite algebra. Duality on matrix algebras. Filtrations. Existence of filtrations with irre-
ducible quotients. The radical and nilpotent ideals. Structure theorem for finite dimensional
algebras: quotient by the radical is a product of matrix algebras. Dimension formula involving
the algebra, its radical, and its irreducible representations. Semisimple algebras. Equivalent
characterizations of semisimple algebras.

5.3 Things to think about

1. Note that part (ii) of Theorem 3.2.2 (density theorem for a direct sum) is not immediately
obvious: a direct product of surjective maps is not necessarily surjective, e.g. take the
identity id : Z → Z and id× id : Z → Z× Z, 𝑛 ↦→ (𝑛, 𝑛).

2. Let 𝜌 : 𝐴→ End(𝑉 ) be an irreducible finite-dimensional representation of an algebra 𝐴.
The density theorem states that if 𝑉 is irreducible, then 𝜌 is surjective. The converse
holds as well: if 𝜌 is surjective, then 𝑉 is irreducible. Prove this!

3. The (isomorphism classes of) irreducible representations of an algebra 𝐴 are in one-to-
one correspondence with those of 𝐴/Rad(𝐴). Prove this!

4. The proof of Theorem 3.3.1 (representations of matrix algebras) involves some new
ideas which are important to think through: the dual representation (which naturally is
a right module at first) is a left module over the opposite algebra, and the duality on the
matrix algebra given by transposition allows us to make the dual into a left module
again.

5. We defined the radical Rad(𝐴) of a (finite-dimensional) algebra 𝐴 as the collection
of all elements of 𝐴 which act by zero on all irreducible representations of 𝐴. This is
more precisely called the Jacobson radical of 𝐴. One defines it in the same way for any
ring 𝐴. Since irreducible representations of 𝐴 correspond to maximal left ideals of 𝐴
(why?), it follows that Rad(𝐴) equals the intersection of all maximal left ideals of 𝐴
(check this!). One can show that this equals the intersection of maximal right ideals
of 𝐴 so that there is no preference of the side. From commutative algebra you may
know the nilradical (the collection of all nilpotent elements) and how this relates to
the Jacobson radical. For non-commutative rings the connection between the Jacobson
radical and nilpotent elements is subtle and led to several notions of radicals, see
https://en.wikipedia.org/wiki/Radical_of_a_ring for an introduction.

6 Lecture 6 (Jun 3, 2024)

6.1 What you need to work through

Pages 49–57 (skip the problem section 3.9).

6.2 Keywords

Characters. Character space (𝐴/[𝐴,𝐴])*. Irreducible characters are linearly independent. If
the algebra is semisimple, irreducible characters form a basis of the character space. The
Jordan–Hölder theorem. The Krull–Schmidt theorem. Representations of tensor products.
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6.3 Things to think about

1. Let 𝑉 be a finite-dimensional representation of an algebra 𝐴. Let 𝑛𝑉 (𝑆) be the multi-
plicity of a simple representation 𝑆 as a constituent of 𝑉 , i.e. the number of times 𝑆
occurs (up to isomorphism) as a simple subquotient in one (any) composition series of
𝑉 . Then

𝜒𝑉 =
∑︁
𝑆

𝑛𝑉 (𝑆)𝜒𝑆 .

Hence, if 𝑝 ≥ 0 is the characteristic of the field 𝑘 , then 𝜒𝑉 determines the multiplicities
𝑛𝑉 (𝑆) modulo 𝑝 (why the mod 𝑝?). In particular, if 𝑝 = 0, then 𝜒𝑉 determines the
multiplicities.

2. Be aware: there may be non-isomorphic representations with the same character, even
if 𝑝 = 0: consider 𝐴 = 𝑘[𝑡]/(𝑡2), the module 𝑉 = 𝑘𝑒1 ⊕ 𝑘2 with 𝑡𝑒1 = 𝑒2 and 𝑡𝑒2 = 0,
and the module 𝑊 = 𝑘2 with trivial 𝑡-action. Then 𝜒𝑉 = 𝜒𝑊 but 𝑉 and 𝑊 are not
isomorphic.

3. Write down a composition series of a semisimple representation 𝑉 =
⨁︀𝑚

𝑖=1 𝑛𝑖𝑉𝑖 . What
are the constituents, and what are their multiplicities? Show that a composition series
is not necessarily unique.

4. If 𝑝 = 0, then semisimple representations are uniquely determined by their character,
i.e. if 𝑉 and 𝑊 are semisimple, then 𝑉 ≃ 𝑊 if and only if 𝜒𝑉 = 𝜒𝑊 . Why?

5. The proofs of Theorem 3.8.1 (Krull–Schmidt) and Theorem 3.10.3 (Representations of
tensor products) may need some further details. Read carefully and try to figure them
out.

6. In the proof of Theorem 3.10: if 𝜌 : 𝐴 → End(𝑉 ) and 𝜎 : 𝐵 → End(𝑊 ) are surjective,
then so is 𝜌⊗ 𝜎 : 𝐴⊗ 𝐵 → End(𝑉 )⊗ End(𝑊 ) ≃ End(𝑉 ⊗𝑊 ). Consider an elementary
tensor 𝑓 ⊗ 𝑔 ∈ End(𝑉 ) ⊗ End(𝑊 ). Then by surjectivity of 𝜌 and 𝜎 there is 𝑎 ∈ 𝐴 and
𝑏 ∈ 𝐵 with 𝜌(𝑎) = 𝑓 and 𝜎(𝑏) = 𝑔 . Hence, every elementary tensor is in the image of
𝜌⊗ 𝜎. But then, by linearity, every tensor is in the image, so 𝜌⊗ 𝜎 is surjective.

7 Lecture 7 (Jun 10, 2024)

7.1 What you need to work through

Pages 58–65.

7.2 Keywords

Group representations. Maschke’s theorem. Representations of Z/𝑝Z in characteristic 𝑝. Char-
acters and class functions. Number of irreducible representations equals number of conjugacy
classes of 𝐺 if char(𝑘) does not divide |𝐺|. Complex representations of finite abelian groups,
symmetric group 𝑆3, quaternion group𝑄8, and symmetric group 𝑆4. Duals and tensor products
of representations.
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7.3 Things to think about

1. You really need to understand the examples in Section 4.3. Please work them out
completely by yourself.

2. Representations of cyclic groups are the underlying principle of the discrete Fourier
transform. You can read about this at https://en.wikipedia.org/wiki/Fourier_transform_
on_finite_groups.

3. When we proved that irreducible representations of a commutative algebra are 1-
dimensional (Corollary 2.3.12) we used Schur’s lemma, and this requires the base field
𝑘 to be algebraically closed. Schur’s lemma does not hold without this assumption, see
Remark 2.3.11. If you want to have some fun you can read https://ulthiel.com/math/wp-
content/uploads/notes-repository/Real-representations-of-cyclic-groups.pdf on the
real representations of cyclic groups. In this case there are 2-dimensional real irre-
ducible representations. It’s fun.

4. You can read about Pauli matrices and their role in physics at https://en.wikipedia.org/
wiki/Pauli_matrices.

5. Let’s explain the relation 𝜒𝑉⊗𝑊 = 𝜒𝑉 𝜒𝑊 from Section 4.4. In general, if 𝑓 : 𝑉1 → 𝑊1

and 𝑔 : 𝑉2 → 𝑊2 are linear maps of vector spaces, we can form the tensor product 𝑓 ⊗ 𝑔
which is the linear map 𝑉1 ⊗ 𝑉2 → 𝑊1 ⊗𝑊2 defined by (𝑓 ⊗ 𝑔)(𝑣 ⊗𝑤) := 𝑓 (𝑣)⊗ 𝑔(𝑤).
If you choose bases of 𝑉 and𝑊 , let 𝐴 be the matrix of 𝑓 and 𝐵 be the matrix of 𝑔 , then
the matrix of 𝑓 ⊗ 𝑔 in the tensor product basis is the so-called Kronecker product 𝐴⊗𝐵.
I leave it to you to check that

𝐴⊗ 𝐵 =

⎛⎜⎝𝑎11𝐵 · · · 𝑎1𝑛𝐵
...

. . .
...

𝑎𝑚1𝐵 . . . 𝑎𝑚𝑛𝐵

⎞⎟⎠ .

If 𝑓 and 𝑔 are endomorphisms, so is 𝑓 ⊗ 𝑔 , and for the trace we get

Tr(𝑓⊗𝑔) = Tr(𝐴⊗𝐵) = 𝑎11Tr(𝐵)+· · ·+𝑎𝑚𝑛Tr(𝐵) = (𝑎11 + . . .+ 𝑎𝑛𝑛) Tr(𝐵) = Tr(𝐴)Tr(𝐵) .

Now, if 𝜌 : 𝐺 → End(𝑉 ) and 𝜎 : 𝐺 → End(𝑊 ) are representations of 𝐺, so is the tensor
product 𝑉 ⊗𝑊 via 𝜌⊗ 𝜎 : 𝐺 → End(𝑉 ⊗𝑊 ) defined by (𝜌⊗ 𝜎)(𝑔) := 𝜌(𝑔)⊗ 𝜎(𝑔). By
the above we have

𝜒𝑉⊗𝑊 (𝑔) = Tr ((𝜌⊗ 𝜎)(𝑔)) = Tr(𝜌(𝑔)⊗𝜎(𝑔)) = Tr(𝜌(𝑔))⊗Tr(𝜎(𝑔)) = 𝜒𝑉 (𝑔)𝜒𝑊 (𝑔) .

8 Lecture 8 (Jun 17, 2024)

8.1 What you need to work through

Pages 66–70.

8.2 Keywords

Scalar product on class functions. Scalar product of characters is dimension of the Hom
space. Orthogonality relation: irreducible characters form orthonormal basis. “Transposed”
orthogonality formula when summing over all characters instead of group elements (involves
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the centralizer). Unitary representations. Any finite-dimensional representation of a finite
group is unitary with respect to some inner product (uniqueness up to scalar for irreducibles).
Alternative proof of Maschke’s theorem over C. Matrix elements of an irreducible unitary
representation. Orthogonality of matrix elements.

8.3 Things to think about

1. Just in case you forgot what Hom𝐺(𝑉,𝑊 ) means in Theorem 4.5.1: these are the mor-
phisms 𝑉 → 𝑊 of representations of 𝐺 (intertwining operators). Moreover, the vector
space isomorphism Hom(𝑉,𝑊 ) ≃ 𝑉 ⊗𝑊 * restricts to Hom𝐺(𝑉,𝑊 ) ≃ (𝑉 ⊗𝑊 *)𝐺 , the
latter denoting the subset of elements that are left invariant by the 𝐺-action.

2. For the proof of Theorem 4.5.1 note that the element 𝑃 ∈ C[𝐺] acts on a representation
𝑋 of 𝐺, giving an endomorphism 𝑃 |𝑋 : 𝑋 → 𝑋 . Show that the image of 𝑃 |𝑋 is

𝑋𝐺 = {𝑥 ∈ 𝑋 | 𝑔𝑥 = 𝑥 for all 𝑥 ∈ 𝑋} ,

so 𝑃 is the projector on 𝑋𝐺 . Show that if 𝑋 is irreducible and not the trivial representa-
tion, then 𝑃 |𝑋 = 0. Conclude that for a general representation 𝑋, the trace Tr(𝑃 |𝑋) is
the multiplicity of the trivial representation in 𝑋 . This in turn is equal to the dimension
of Hom𝐺(C, 𝑋).

3. Notice that Theorem 4.5.1 means that the rows of the character table (see Section
4.8) are orthogonal and Theorem 4.5.4 means that the columns are orthogonal. These
relations (and more) can sometimes help you to complete a partial character table! See
the example of the character table of the alternating group 𝐴4 in Section 4.8.

4. Note that the matrix (𝑡𝑖 𝑗(𝑥))𝑛𝑖,𝑗=1 formed by the matrix elements in Section 4.7 is really
just the matrix of the linear operator 𝜌𝑉 (𝑥) in the chosen basis 𝑣1, . . . , 𝑣𝑛 since 𝑡𝑖 𝑗(𝑥) =
(𝜌𝑉 (𝑥)𝑣𝑖 , 𝑣𝑗) is the coefficient of 𝑣𝑗 in the basis representation of 𝜌𝑉 (𝑥)𝑣𝑖 .

5. For the proof of Proposition 4.7.1 (orthogonality of matrix elements) note a couple of
things:

(a) The 𝑤*
𝑖 form the dual basis of the 𝑤𝑖 .

(b) Define an inner product on 𝑊 * by (𝑤*
𝑖 , 𝑤

*
𝑗 ) := (𝑤𝑖 , 𝑤𝑗).

(c) Show that (𝑥𝑤*
𝑖 , 𝑤

*
𝑗 ) = (𝑥𝑤𝑖 , 𝑥𝑗). This uses the 𝐺-invariance of (·, ·).

(d) You can define an inner product on 𝑉 ⊗𝑊 * by (𝑣 ⊗ 𝑤, 𝑣 ′ ⊗ 𝑤 ′) := (𝑣, 𝑣 ′)(𝑤,𝑤 ′).

(e) (𝜒triv, 𝜒𝑉 ⊗ 𝜒𝑊 *) = (𝜒triv, 𝜒𝑣𝜒𝑊 ) = (𝜒𝑊 , 𝜒𝑉 ).

9 Lecture 9 (Jun 24, 2024)

9.1 What you need to work through

Pages 71–93 (there are historical interludes in between).

9.2 Keywords

Character tables. Examples 𝑆3,𝑄8, 𝑆4,𝐴5. Tensor product multiplicities. Frobenius determinant.
Frobenius–Schur indicator.

10



9.3 Things to think about

1. You have to be able to reproduce the character tables of cyclic groups, 𝑆3, 𝐴4, 𝑄8, 𝑆4,
and 𝐴5 at any time in your life!

2. The motivation for Definition 5.1.1 (complex, real, quaternionic type) is as follows. Given
a complex irreducible representation 𝑉 of a finite group 𝐺 you can ask: can we realize 𝑉
over the real numbers, i.e. is there a basis of 𝑉 such that the matrices of the operators
𝜌(𝑔) in this basis have real entries for all 𝑔 ∈ 𝐺. A necessary condition for this is certainly
that 𝜒𝑉 takes only real values. This is equivalent to 𝜒𝑉 = 𝜒𝑉 . Since 𝜒𝑉 = 𝜒𝑉 * , this in
turn is equivalent to 𝑉 * ≃ 𝑉 . So, if 𝑉 ̸≃ 𝑉 *, then certainly 𝑉 cannot be realized over
the real numbers—it is of complex type. Let’s look further into the case 𝑉 ≃ 𝑉 *. The
existence of such an isomorphism is equivalent to Hom𝐺(𝑉, 𝑉

*) ̸= 0, i.e. there is a non-
zero morphism 𝐵 : 𝑉 → 𝑉 * of 𝐺-modules. But this is equivalent to the existence of a 𝐺-
invariant non-zero bilinear form on 𝑉 . Note that since 𝑉 is irreducible,Hom𝐺(𝑉, 𝑉

*) = C
if this exists, so up to scalar there will be a unique 𝐺-invariant non-zero bilinear form if
there is one. One can show (see, e.g., https://math.stackexchange.com/q/4470366) that
such a form is either symmetric or skew-symmetric. This is precisely the distinction
between real type and quaternionic type. Moreover, one can show (Problem 5.1.2(b)) that
𝑉 is of real type if and only if 𝑉 can be realized over the real numbers. Hence, if 𝑉
being of quaternionic type means that even though 𝜒𝑉 is real-valued, 𝑉 cannot be
realized over the real numbers. Precisely this happens for the 2-dimensional irreducible
representation of the quaternionic group!

3. Note that in the proof of Theorem 5.1.5 you also have a formula for the Frobenius–Schur
indicator: FS(𝑉 ) = |𝐺|−1𝜒𝑉 (

∑︀
𝑔∈𝐺 𝑔

2).

10 Lecture 10 (Jul 1, 2024)

10.1 What you need to work through

Pages 94–96.

10.2 Keywords

Algebraic numbers and algebraic integers. A ∩ Q = Z. Minimal polynomial and algebraic
conjugates of an algebraic number.

10.3 Things to think about

1. Review Vieta’s formulas: https://en.wikipedia.org/wiki/Vieta%27s_formulas

2. Review the notion of an algebraically closed field and of the algebraic closure of a field:
https://en.wikipedia.org/wiki/Algebraically_closed_field, https://en.wikipedia.org/wiki/
Algebraic_closure

3. Check out https://en.wikipedia.org/wiki/Transcendental_number
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11 Lecture 11 (Jul 15, 2024)

11.1 What you need to work through

Pages 97–98.

11.2 Keywords

Frobenius divisibility. Solvable groups. Burnside’s theorem (statement, started with proof).

11.3 Things to think about

1. What I find astonishing: Burnside’s theorem is really about group theory. Yet the proof
proceeds via character theory (especially also integrality of some algebraic numbers).
On the Wikipedia page https://en.wikipedia.org/wiki/Burnside%27s_theorem you can
read the following interesting comment:

The theorem was proved by William Burnside (1904) using the repre-
sentation theory of finite groups. Several special cases of the theorem had
previously been proved by Burnside in 1897, Jordan in 1898, and Frobenius
in 1902. John G. Thompson pointed out that a proof avoiding the use of
representation theory could be extracted from his work in the 1960s and
1970s on the N-group theorem, and this was done explicitly by Goldschmidt
(1970) for groups of odd order, and by Bender (1972) for groups of even order.
Matsuyama (1973) simplified the proofs.

There are other theorems like on the so called Frobenius kernel (https://en.wikipedia.
org/wiki/Frobenius_group) whose proof is via character theory and no pure group theory
proof is known.

However, one could raise the (almost philosophical) question of why the character
theory of a group is not considered as group theory and why one seeks alternative
proofs. What do you think?

2. Recall that a finite group 𝐺 is called simple if it has no non-trivial normal subgroups.
The Jordan–Hölder theorem states that any finite group 𝐺 admits a composition series: a
chain 1 = 𝐺0 C𝐺1 C · · ·C𝐺𝑛 = 𝐺 of subgroups 𝐺𝑖 with 𝐺𝑖 normal in 𝐺𝑖+1 and 𝐺𝑖+1/𝐺𝑖

simple. This means that one can think of 𝐺 as being built up from simple groups 𝐺𝑖+1/𝐺𝑖 ,
but note that the precise information about how these simple groups are “stacked on top
of each other” to give 𝐺 is only contained in the composition series itself, not just in its
simple factor groups. Anyway, this should illustrate that for when we want to understand
all finite groups we should begin with the finite simple groups. These are indeed
classified, see https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups.

3. Show that a finite simple group 𝐺 is solvable if and only if it is already abelian. The
finite simple abelian groups are easy to classify: they are the cyclic groups of prime
order Z/𝑝Z. Hence, when we try to classify finite simple groups, we can focus on the
non-abelian ones, and so, by the preceding comment, we can focus on the non-solvable
ones. Burnside’s theorem now tells us that the order of such a group must be the product
of at least three distinct prime factors.
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12 Lecture 12 (Jul 22, 2024)

12.1 What you need to work through

Pages 99–107.

12.2 Keywords

Burnside’s theorem (finished proof). Representations of products of groups (special case of
representations of tensor products of algebras, see Theorem 3.10.2). Virtual representations
and virtual characters. Lemma on a condition ensuring a virtual character 𝜒𝑉 is an actual
character: (𝜒𝑉 , 𝜒𝑉 ) = 1 and 𝜒𝑉 (1) > 0. Restriction Res𝐺𝐻𝑉 of a representation 𝑉 of 𝐺 to a
subgroup 𝐻 of 𝐺. Induced representation Ind𝐺𝐻𝑉 . Explicit construction of Ind

𝐺
𝐻𝑉 . Dimension of

Ind𝐺𝐻𝑉 . Isomorphism Ind𝐺𝐻𝑉 ≃ Hom𝐻(𝑘[𝐺], 𝑉 ). Character of Ind𝐺𝐻𝑉 : Frobenius formula. Only
mentioned as statements: Frobenius reciprocity, Clifford theory, Frobenius groups.

12.3 Things to think about

1. It is useful to know that Ind𝐺𝐻𝑉 is isomorphic to 𝑘[𝐺]⊗𝑘[𝐻] 𝑉 , see Problem 5.10.2(d) for
this.

2. Check that Frobenius reciprocity implies for class functions 𝜙 and 𝜓 that (𝜙, Ind𝐺𝐻𝜓) =
(𝜓,Res𝐺𝐻𝜙).

3. The fundamental concept behind Frobenius reciprocity is an adjunction of functors
Ind𝐺𝐻 : 𝑘𝐻-mod → 𝑘𝐺-mod and Res𝐺𝐻 : 𝑘𝐺-mod → 𝑘𝐻-mod. See https://en.wikipedia.
org/wiki/Adjoint_functors.

4. We have everything ready to compute the character table of the symmetric group 𝑆𝑛.
This is done next in the book starting with Section 5.12. I highly recommend to continue
reading! It is a beautiful theory connecting representation theory and combinatorics.
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