Übungen zu Elementare Zahlentheorie — Blatt 3

Prof. Dr. Ulrich Thiel, TU Kaiserslautern Abgabetermin: Montag, 31.05.2021, 10:00 Uhr Sommersemester 2021 Dr. Tommy Hofmann

Mit Primzahl ist im Folgenden stets eine positive Primzahl gemeint.

Aufgabe 1. Für eine Primzahl $p \in \mathbb{P}$ und $n \in \mathbb{Z}$, $n \neq 0$, sei $v_p(n) = \max\{k \in \mathbb{N} \mid p^k \text{ teilt } n\}$. Zeigen Sie:

(i) Für $n \in \mathbb{N}$ gilt

$$n = \prod_{p \in \mathbb{P}} p^{v_p(n)}.$$

- (ii) Für $p \in \mathbb{P}$ und $n, m \in \mathbb{Z}$ mit $n, m \neq 0$ gilt $v_p(nm) = v_p(n) + v_p(m)$. Falls zusätzlich $n + m \neq 0$, so gilt $v_p(n + m) \geq \min(v_p(n), v_p(m))$.
- (iii) Für $n, m \in \mathbb{N}$ gilt

$$\operatorname{ggT}(n,m) = \prod_{p \in \mathbb{P}} p^{\min(v_p(n),v_p(m))} \text{ und } \operatorname{kgV}(n,m) = \prod_{p \in \mathbb{P}} p^{\max(v_p(n),v_p(m))}.$$

Aufgabe 2. Die Liouvillesche λ -Funktion ist definiert durch

$$\lambda \colon \mathbb{N} \longrightarrow \mathbb{R}, \ n \longmapsto (-1)^{\sum_{p \in \mathbb{P}} v_p(n)}.$$

Zeigen Sie:

- (i) Die Funktion λ ist multiplikativ.
- (ii) Für die Summatorfunktion von λ gilt für alle $n \in \mathbb{N}$:

$$(\lambda * e)(n) = \begin{cases} 1, & \text{falls es ein } a \in \mathbb{N} \text{ gibt mit } a^2 = n, \\ 0, & \text{sonst.} \end{cases}$$

(iii) Für alle $n \in \mathbb{N}$ gilt

$$\lambda(n) = \sum_{\substack{1 \le d \le n \\ d^2 \mid n}} \mu\left(\frac{n}{d^2}\right).$$

Aufgabe 3.

(i) Es sei $\alpha \colon \mathbb{N} \to \mathbb{R}$ eine Funktion mit $\alpha(1) = 1$. Zeigen Sie, dass α genau dann multiplikativ ist, wenn

$$\alpha(m)\alpha(n) = \alpha(ggT(m,n))\alpha(kgV(m,n))$$

für alle $m, n \in \mathbb{N}$ gilt.

(ii) Es sei $m \in \mathbb{N}$ eine natürliche Zahl, sodass 6m+1, 12m+1 und 18m+1 Primzahlen sind. Zeigen Sie, dass die Zahl n=(6m+1)(12m+1)(18m+1) eine Carmichael Zahl ist, d.h., es gilt $a^{n-1} \equiv 1 \mod n$ für alle $a \in \mathbb{Z}$ mit $\operatorname{ggT}(a,n)=1$.

Aufgabe 4. Es sei φ die eulersche φ -Funktion. Zeigen Sie:

- (i) Es gilt $\varphi(m^k) = m^{k-1}\varphi(m)$ für alle $m, k \in \mathbb{N}$.
- (ii) Ist $m, n \in \mathbb{N}$ mit $m \mid n$, so gilt $\varphi(m) \mid \varphi(n)$.
- (iii) Für $m, n \in \mathbb{N}$ gilt

$$\varphi(mn) = \frac{\operatorname{ggT}(m,n)\varphi(m)\varphi(n)}{\varphi(\operatorname{ggT}(m,n))}.$$

- (iv) Ist $n \in \mathbb{N}$ eine natürliche Zahl mit r verschiedenen ungeraden Primfaktoren, so gilt $2^r \mid \varphi(n)$.
- (v) Hat $n \in \mathbb{N}$ höchstens 8 verschiedene Primfaktoren, so gilt $\varphi(n) > \frac{n}{6}$.