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This document contains some comments on the book “Tensor Categories” by
Etingof, Gelaki, Nikshych & Ostrik [3]. I’ve written them while reading the book
and giving seminars and courses based on it. They consist of minor—sometimes
trivial—remarks, corrections or additions, issues I couldn’t resolve, and things I
found interesting. If you find a mistake or can resolve one of the issues, please send
me an email. Note that P. Etingof published some corrections on his website1 as
well. I want to emphasize that I consider this an important and excellent book, even
though some of my comments may sound a bit sloppy.

I would like to thank Liam Rogel for turning my comments—which I originally
had on my website—into this LaTeX document.
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1. Chapter 1: Abelian categories

1.1. Footnote page 1.
In fact, even when we work with categories that are not essentially
small (such as the category of all vector spaces), we will allow our-
selves to abuse terminology and speak about “the set of isomorphism
classes of objects” of such a category.

So, for example in Section 1.5 where the assumption is only that 𝒞 is abelian we need
to implicitly assume that it is also essentially small since otherwise the Grothendieck
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group can’t be defined. I guess this is what the footnote says. Such an implicit
assumption seems to be in place throughout the book whenever necessary I think.

1.2. Section 1.10. The coend of a functor 𝐹 : 𝒞 → Vec is a quotient of
⨁︀

𝑋∈𝒞 𝐹 (𝑋)*⊗
𝐹 (𝑋). This thing needs to be a vector space, so I would say 𝒞 in fact needs to be
small. The statements in Theorem 1.9.15 and Theorem 1.10.1 are something up to
equivalence, so essentially small is enough here (this is added in Theorem 1.9.15
but not in Theorem 1.10.1). [Update: I was told that the coend can still be defined
in the essentially small case by summing over representatives of the isomorphism
classes of simple objects.]

2. Chapter 2: Monoidal categories

2.1. Historical remark. Category theory was introduced by S. Eilenberg and
S. MacLane [2] in 1945. The definition of a monoidal category first appeared in
the paper [6] by S. MacLane (1963). From the same year there’s also the paper [1]
by J. Bénabou, in which a category with multiplication is defined. I do not have
access to the last paper but judging from the MathSciNet review (and from the fact
that the paper is only 3 pages long), coherence in not discussed here. M. Müger says
“It is mysterious to this author why the explicit formalization of tensor categories
took twenty years to arrive after that of categories [...]”. I’m not sure if I agree.

2.2. Alternative structure. I think it’s nicer to rearrange the material a bit and
proceed more like in MacLane’s 1963 paper: introduce categories with multiplication;
introduce associators as the first stage in categorifying associativity; say that we also
want “higher associativity laws” (without formally defining what this means since
it’s “intuitive”); for 𝑛 factors there are 𝐶𝑛−1 = 1

𝑛

(︀
2(𝑛−1)
𝑛−1

)︀
possible ways to set the

parenthesis; for semigroups we get higher associativity for free; for categories, higher
associativity for 𝑛 = 4 is precisely the pentagon diagram (𝐶3 = 5); MacLane’s
coherence theorem says that once we impose higher associativity for 𝑛 = 4 we have it
for all 𝑛. I think one can believe that without a proof. A category with multiplication
and associator satisfying higher associativity (so, satisfying the pentagon axiom) is
called a semigroup category. This categorifies the notion of a semigroup.

Remark 2.1. The proof of the coherence theorem given in the book (Theorem 2.9.2)
uses the strictness theorem (Theorem 2.8.5) and, as far as I can see, the proof of
this uses the unit to show that the functor 𝐿 : 𝒞 → 𝒞≀ is fully faithful. I don’t know
if one can show this directly without a unit. But the proof of the coherence theorem
in MacLane’s paper works without a unit, so all is good. (In Remark 2.2.9 it is
stated that semigroup categories categorify semigroups. However, as the proof of
the coherence theorem given there implicitly seems to make use of the unit, I would
say this is not clear from there.)

2.3. Second paragraph of Section 2.1. “Abelian categories are a categorification
of abelian groups”. Is this not a bit strong?
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2.4. Motivation Units. To introduce units, I again think it’s nicer to rearrange
things.

A unit in a semigroup is an element 1 such that 1 · 𝑥 = 𝑥 and 𝑥 · 1 = 𝑥 for all
𝑥. The first stage in categorifying this is a triple (1, 𝑙, 𝑟) of an object 1 ∈ 𝒞 and
natural equivalences 𝑙 : 1⊗− ∼→ id𝒞 and 𝑟 : −⊗1

∼→ id𝒞 . But, similar as before with
the higher associativity, we want to freely insert and remove the 1 everywhere. For
semigroups we get this for free; but for semigroup categories we need to impose it.
Considering three factors we want for example that the diagrams

(2.1) (𝑋 ⊗ 1)⊗ 𝑌
𝑎𝑋,1,𝑌 //

𝑟𝑋⊗id𝑌 &&

𝑋 ⊗ (1⊗ 𝑌 )

id𝑋⊗𝑙𝑌xx
𝑋 ⊗ 𝑌

(2.2) (1⊗𝑋)⊗ 𝑌
𝑎1,𝑋,𝑌 //

𝑙𝑋⊗id𝑌 &&

1⊗ (𝑋 ⊗ 𝑌 )

𝑙𝑋⊗𝑌xx
𝑋 ⊗ 𝑌

(2.3) (𝑋 ⊗ 𝑌 )⊗ 1
𝑎𝑋,𝑌,1 //

𝑟𝑋⊗𝑌 &&

𝑋 ⊗ (𝑌 ⊗ 1)

id𝑋⊗𝑟𝑌xx
𝑋 ⊗ 𝑌

commute and that
𝑙1 = 𝑟1 .

Let’s call such a structure an LR unit. The “extended” coherence theorem (Theorem
2.9.2, or the one in MacLane’s paper) shows that these conditions already imply
coherence including the unit object for arbitrary number of factors.

LR units were introduced by MacLane (1963). In the paper [4] by G.M. Kelley
(1964), it is shown that the first diagram above (called triangle diagram) already
implies the other three properties. This is also shown in the book in Proposition
2.2.4 and Corollary 2.2.5.

It is straightforward to see that a unit in a semigroup can equivalently be
characterized by the property that 12 = 1 and the maps 𝑥 ↦→ 1 · 𝑥 and 𝑥 ↦→ 𝑥 · 1 are
bijections. This point of view was categorified by N. Saavedra Rivano [7] in 1972,
under the name reduced units. A reduced unit is a pair (1, 𝜄) of an object 1 ∈ 𝒞 and
an isomorphism 1⊗ 1

∼→ 1 such that the functors 𝐿1 : 𝒞 → 𝒞 defined by 𝑋 ↦→ 1⊗𝑋,
𝑓 ↦→ id1 ⊗ 𝑓 , and 𝑅1 : 𝒞 → 𝒞 defined by 𝑋 ↦→ 𝑋 ⊗ 1, 𝑓 ↦→ 𝑓 ⊗ id1, are equivalences
on 𝒞.

In the obvious way one can define a category of LR units and a category of
reduced units. The arguments in the book show essentially:

Proposition 2.2. The category of LR units is canonically isomorphic to the category
of reduced units. Moreover, these categories are contractible if not empty, i.e., they
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are equivalent to the terminal category (in particular up to unique isomorphism,
there’s just one object).

A semigroup category having a unit is called a monoidal category. The approach
using reduced units shows that a unit for a semigroup category is a property and
not a structure as there’s no condition on 𝜄. Reduced units are a more economical
way to encode the same information.

Remark 2.3. Saavedra (1972) showed that both notions of units are equivalent, but
there seems to be a mistake in the proof given there according to the nice paper J.
Kock [5]. The proposition above is also in Kock’s paper.

2.5. Beginning of 2.2. Why do 𝑙𝑋 and 𝑟𝑋 exist? Recall that 𝐿1 = 1⊗− : 𝒞 → 𝒞
is an equivalence. In particular, it induces an isomorphism

(2.4) (𝐿1)1⊗𝑋,𝑋 : Hom(1⊗𝑋,𝑋) → Hom(1⊗ (1⊗𝑋), 1⊗𝑋) .

We have a morphism

(2.5) 1⊗ (1⊗𝑋)
𝑎−1
1,1,𝑋−−−−→ (1⊗ 1)⊗𝑋

𝜄⊗id𝑋−−−−→ 1⊗𝑋 ,

and now we define 𝑙𝑋 to be the inverse of this one under (𝐿1)1⊗𝑋,𝑋 . We proceed
similarly for 𝑟𝑋 .

2.6. Proof of Proposition 2.2.2. The commutative diagram comes from naturality
of 𝑙 : 1⊗− ∼→ id𝒞 applied to 𝑙𝑋 : 1⊗𝑋 → 𝑋.

2.7. Proof of Proposition 2.2.3. Why do the quadrangles commute? As stated,
it’s due to the functionality of the associativity isomorphisms. But maybe it’s helpful
unraveling this once because arguments like this will be used all the time. Let’s look
at the left quadrangle and write it like this:

(2.6) ((𝑋 ⊗ 1)⊗ 1)⊗ 𝑌
𝑟𝑋⊗id1⊗id𝑌 //

𝑎𝑋⊗1,1,𝑌

��

(𝑋 ⊗ 1)⊗ 𝑌

𝑎𝑋,1,𝑌

��
(𝑋 ⊗ 1)⊗ (1⊗ 𝑌 )

𝑟𝑋⊗id1⊗𝑌

// 𝑋 ⊗ (1⊗ 𝑌 )

Recall that if you have functors 𝐹,𝐺 : 𝒞 → 𝒟 and a natural transformation 𝜙 : 𝐹 →
𝐺, then naturality of 𝜙 means that whenever you have a morphism 𝑓 : 𝑋 → 𝑌 in 𝒞,
the diagram

(2.7) 𝐹 (𝑋)
𝐹 (𝑓) //

𝜙𝑋

��

𝐹 (𝑌 )

𝜙𝑌

��
𝐺(𝑋)

𝐺(𝑓)
// 𝐺(𝑌 )

commutes. One needs to stare a minute at the diagram before to see what the
𝐹,𝐺,𝑋, 𝑌, 𝜙, 𝑓 are that makes it a naturality diagram. They are
(2.8)
𝐹 = (−⊗1)⊗𝑌 , 𝐺 = −⊗(1⊗𝑌 ) , 𝜙 = 𝑎−,1,𝑌 : 𝐹 → 𝐺 , 𝑓 = 𝑟𝑋 : 𝑋⊗1 → 𝑋 .

2.8. Corollary 2.2.5. Typo at the beginning, set 𝑋 = 𝑌 = 1 in (2.12).
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2.9. Proposition 2.2.6. In the proof it’s not really said what’s meant by “𝜂” maps
𝜄 to “𝜄′”. It means that the diagram

(2.9) 1⊗ 1
𝜂⊗𝜂 //

𝜄

��

1′ ⊗ 1′

𝜄′

��
1

𝜂
// 1′

commutes. This is exactly what a morphism in the category of reduced units is. To
prove this (Exercise 2.2.7), proceed as follows. We have a commutative diagram

(2.10) 1⊗ 𝑌
𝑙𝑌 // 𝑌

(1⊗ 1′)⊗ 𝑌
𝑎1,1′,𝑌 //

𝑟′1⊗id1

88

𝑙1′⊗id𝑌 &&

1⊗ (1′ ⊗ 𝑌 )
𝑙1′⊗𝑌 //

id1⊗𝑙′𝑌

ff

𝑙1′⊗𝑌xx

1′ ⊗ 𝑌

𝑙′𝑌
��

𝑙′𝑌

OO

1′ ⊗ 𝑌
𝑙𝑌 ′

// 𝑌

The upper triangle is the triangle diagram, the lower triangle is the additional
triangle diagram (2.12) from Proposition 2.2.4 applied to 𝑋 = 1′ and 𝑌 = 𝑌 . The
upper square is naturality and the lower square is obvious. The outer path gives the
commutative diagram

(2.11) 1⊗ 𝑌
𝑙𝑌

##
𝜂⊗id𝑌

��

𝑌

1′ ⊗ 𝑌
𝑙′𝑌

;;

In a similar way one obtains, using the second triangle diagram (2.13) from Proposi-
tion 2.2.4, the diagram

(2.12) 𝑋 ⊗ 1
𝑟𝑋

##
id𝑋⊗𝜂

��

𝑋

1′ ⊗𝑋

𝑙′𝑋

;;

Stacking the last diagram on top of the second last diagram with 𝑌 = 1′ and 𝑋 = 1
proves the claim, using that 𝜂 = 𝑙1′ ∘ (𝑟′1)−1.

2.10. Proof of 2.2.6. Why is it sufficient to show that “if 𝑏 : 1 → 1 is an iso-
morphism...”? We want to show that there is a unique isomorphism 𝜂 : 1 → 1′

mapping 𝜄 to 𝜄′ (I explained above what that means). Let 𝜂′ : 1 → 1′ be another such
isomorphism. Then 𝑏 := (𝜂′)−1 ∘ 𝜂 : 1 → 1 is an isomorphism making the diagram
(2.15) commutative. And now showing that 𝑏 = id solves the problem.
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2.11. Definition 2.2.8. Very pedantic but 𝑙 and 𝑟 are never defined (the 𝑙𝑋 and
𝑟𝑋 give rise to functors 𝑙 : 𝒞 → 𝒞 and 𝑟 : 𝒞 → 𝒞).

2.12. Example 2.3.6. There was the question why in the definition of the category
𝒞𝐺(𝐴) we need 𝐴 to be abelian. The answer is: for − ⊗ − to be a bifunctor
𝒞𝐺(𝐴)× 𝒞𝐺(𝐴) → 𝒞𝐺(𝐴). The composition in 𝒞𝐺(𝐴) is the product in 𝐴 and the
tensor product of morphisms is 𝑎⊗ 𝑏 = 𝑎𝑏. Now, for two morphisms (𝑎2, 𝑏1), (𝑎2, 𝑏1)
in 𝒞𝐺(𝐴)× 𝒞𝐺(𝐴) we must have

(𝑎2𝑏2)(𝑎1𝑏1) = (−⊗−)(𝑎2, 𝑏2) ∘ (−⊗−)(𝑎1, 𝑏1)

= (−⊗−)((𝑎2, 𝑏2) ∘ (𝑎1, 𝑏1))
= (−⊗−)((𝑎2𝑎1, 𝑏2𝑏1))

= (𝑎2𝑎1)(𝑏2𝑏1).

(2.13)

This is equal if 𝐴 is abelian.

2.13. Remark 2.4.2. I think there’s a typo, it should be Section 2.6, not 2.5 (there
are no non-trivial monoidal structures discussed in 2.5).

2.14. After Remark 2.4.2. If (𝐹, 𝐽) : (𝒞,⊗, 1) → (𝒞≀,⊗≀, 1≀) is a monoidal functor,
there is a unique isomorphism 𝜙 : 1≀ → 𝐹 (1) making the diagram

(2.14) 1≀ ⊗≀ 𝐹 (1)
𝑙≀
𝐹 (1) //

𝜙⊗≀id𝐹 (1)

��

𝐹 (1)

𝐹 (𝑙1)
−1

��
𝐹 (1)⊗≀ 𝐹 (1)

𝐽1,1

// 𝐹 (1⊗ 1)

commutative. The reason for this is as follows.
(1) If 1 is a unit in a monoidal category (𝒞,⊗), then by definition the functor

𝑅1 : 𝒞 → 𝒞 mapping 𝑋 to 𝑋 ⊗ 1 and 𝑓 to 𝑓 ⊗ id1 is an equivalence. In
particular, the induced map Hom𝒞(𝑋,𝑌 ) → Hom𝒞(𝑋⊗1, 𝑌 ⊗1), 𝑓 ↦→ 𝑓⊗id1,
is a bijection.

(2) If 𝜄 : 1⊗ 1 → 1 is an isomorphism, so that (1, 𝜄) is a unit, and if 1′ ∈ 𝒞 is an
object isomorphic to 1 via some isomorphism 𝜂 : 1 → 1′, then (1′, 𝜄′) with
𝜄′ = 𝜂−1 ∘ 𝜄 ∘ (𝜂 ⊗ 𝜂) is also a unit.

(3) Back to the original problem: by assumption 𝐹 (1) is isomorphic to 1′,
hence it is a unit by 2). By 1) the map Hom𝒞≀(1≀, 𝐹 (1)) → Hom𝒞≀(1≀ ⊗
𝐹 (1), 𝐹 (1) ⊗≀ 𝐹 (1)), 𝑓 ↦→ 𝑓 ⊗≀ id𝐹 (1), is then a bijection. Now, 𝜙 is the
preimage of 𝑙≀𝐹 (1) ∘ 𝐹 (𝑙1) ∘ 𝐽1,1 under this bijection.

2.15. Exercise 2.4.4. By definition of 𝜙, the composition

(2.15) 1≀ ⊗≀ 𝐹 (1)
𝜙⊗id𝐹 (1) // 𝐹 (1)⊗≀ 𝐹 (1)

𝐽1,1 // 𝐹 (1⊗ 1)
𝐹 (𝑙1) // 𝐹 (1)

is equal to 𝑙≀𝐹 (1). Apply −⊗ 𝐹 (𝑋) to this diagram. Using naturality of 𝐽 and the
monoidal structure axiom one obtains the required diagram for 1 ⊗𝑋. Now, use
that 1⊗𝑋 ≃ 𝑋 to get the diagram for 𝑋.
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2.16. Remark 2.4.7. If (𝐹, 𝐽) : 𝒞 → 𝒞′ and (𝐹 ′, 𝐽 ′) : 𝒞′ → 𝒞′′ are monoidal functors,
then there is a natural monoidal structure 𝐽 ′′ on 𝐹 ′′ = 𝐹 ′ ∘ 𝐹 defined by

(2.16) 𝐹 ′𝐹 (𝑋)⊗ 𝐹 ′𝐹 (𝑌 )
𝐽′
𝐹 (𝑋),𝐹 (𝑌 ) //

𝐽′′
𝑋,𝑌 ++

𝐹 ′(𝐹 (𝑋)⊗ 𝐹 (𝑌 ))

𝐹 ′(𝐽𝑋,𝑌 )

��
𝐹 ′𝐹 (𝑋 ⊗ 𝑌 )

We consider 𝐹 ′ ∘ 𝐹 always with this monoidal structure.

2.17. Remark 2.4.9. Applying 𝜂 to the commutative diagram defining 𝜙 yields
𝜙−1
1 ⊗≀ 𝜂1 = (𝜙−1

2 ∘ 𝜂1) ⊗≀ 𝜂1. Composition with id1≀ ⊗≀ 𝜂−1
1 yields the equality

𝜙−1
1 ⊗≀ id𝐹 1(1) = (𝜙−1

2 ∘ 𝜂1) ⊗≀ id𝐹 1(1). From the above we know that 𝐹 1(1) is a
unit, hence 𝑅𝐹 1(1) is an equivalence, hence this equality implies 𝜙−1

1 = 𝜙−1
2 ∘ 𝜂1 as

claimed. Note that we use the assumption that 𝜂1 is an isomorphism; we don’t get
this for free.

I think the reason for asking 𝜂1 to be an isomorphism is the following. It seems
natural to require that the diagram

(2.17) 𝐹 1(1)

𝜂1

��

1≀

𝜙1
==

𝜙2 !!
𝐹 2(1)

commutes. As shown on p. 64 in the book by Saavedra, the commutativity of this
diagram is in fact equivalent to 𝜂1 being an isomorphism.

2.18. Remark 2.4.10. For monoidal equivalences this remark provides way not
enough information in my opinion (look at Saavedra’s book, Section 4.4). To
make things precise, let (𝐹, 𝐽) : 𝒞 → 𝒞′ be a monoidal functor. We call this a
monoidal equivalence if there is a monoidal functor (𝐺,𝐾) : 𝒞′ → 𝒞 together with
isomorphisms 𝛼 : id𝒞 → 𝐺𝐹 and 𝛽 : 𝐹𝐺 → id𝒞′ of monoidal functors (i.e., mor-
phisms of monoidal functors as defined in the book such that their inverse is again a
morphism of monoidal functors; note that we have defined a monoidal structure on
the composition and we have a canonical monoidal structure on the identity, so this
makes sense). One should call the whole datum ((𝐹, 𝐽), (𝐺,𝐾), 𝛼, 𝛽) a monoidal
equivalence and maybe call (𝐺,𝐾) a monoidal quasi-inverse.

The claim in this remark is now:

Lemma 2.4. Let (𝐹, 𝐽) : 𝒞 → 𝒞′ be a monoidal functor such that 𝐹 is an equivalence
of ordinary categories. Then any quasi-inverse 𝐺 : 𝒞′ → 𝒞 can be “improved” to a
monoidal quasi-inverse; in particular, (𝐹,𝐾) is already a monoidal equivalence.
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Proof. Let 𝑋 ′, 𝑌 ′ ∈ 𝒞′. Since 𝐹 is an equivalence, there is a unique morphism
𝐾𝑋′,𝑌 ′ : 𝐺(𝑋 ′)⊗′ 𝐺(𝑌 ′) → 𝐺(𝑋 ′ ⊗′ 𝑌 ′) making the diagram

(2.18) 𝐹 (𝐺(𝑋 ′)⊗′ 𝐺(𝑌 ′))
𝐹 (𝐾𝑋′,𝑌 ′ )

//

𝐽𝐺(𝑋′),𝐺(𝑌 ′)

��

𝐹𝐺(𝑋 ′ ⊗′ 𝑌 ′)

𝛽𝑋′⊗′𝑌 ′

��
𝐹𝐺(𝑋 ′)⊗′ 𝐹𝐺(𝑌 ′)

𝛽𝑋′⊗𝛽𝑌 ′
// 𝑋 ′ ⊗′ 𝑌 ′

commutative. This yields a natural isomorphism 𝐾 : 𝐺(−)⊗′ 𝐺(−) → 𝐺(−⊗′ −).
Moreover, the diagram shows that 𝛽 : 𝐹𝐺 → id𝒞′ is a morphism of monoidal
functors (for this, recall the definition of the monoidal structure on the composition
of monoidal functors from above). So far, so good. But we also need to show that 𝛼
is monoidal and here I’m not sure. What we can do, while fixing 𝛽, is to replace 𝛼
by another isomorphism, we again denote by 𝛼, such that (𝐹,𝐺, 𝛼, 𝛽) is an adjoint
equivalence, meaning that 𝛼 and 𝛽 give unit and counit of an adjunction. This is
some elementary category theory lemma I think (see here). Now, Lemma 4.4.2.2 in
Saavedra’s book shows that in this case 𝛼 is also monoidal. I don’t want to type the
diagrams used for the proof here... □

I’m unsure whether this works if we do not “improve” the equivalence to an
adjoint equivalence. Anyways, the claim in Remark 2.4.10 is true, but this was not
“easy to show” for me. Maybe they found a simpler argument?

2.19. Several problems with Section 2.6. I don’t know what happened here.
The title is “Monoidal functors between categories of graded vector spaces”, alright.
Then it starts with the categories 𝒞𝜔

𝐺, why not. But in line 3 it’s said that this is the
“monoidal category of graded vector spaces introduced in Example 2.3.8”. This is not
true. Anyways, we can of course consider the same question for the 𝒞𝜔

𝐺, so take a
monoidal functor (𝐹, 𝐽) : 𝒞𝜔1

𝐺1
→ 𝒞𝜔2

𝐺2
. In the first line of the second paragraph they

consider the “restriction to simple objects”. Again, it looks like they actually wanted
to talk about Vec𝜔𝐺 instead. Anyways, it’s still true that 𝐹 is a group morphism
𝐺1 → 𝐺2. But now the equation after (2.30) giving the monoidal structure axiom
is confusing. On the very left there is 𝜔1(𝑔, , 𝑙). I think this should actually be
𝐹 (𝜔1(𝑔, , 𝑙)). It seems to me they implicitly assume that 𝐹 is the identity on
morphisms and I don’t know why this should be the case. The statement further
down below that monoidal functors correspond to pairs (𝑓, 𝜇) thus seems to be
incorrect; there should be an additional datum of an endomorphism on 𝐴 in my
opinion, not?

Let’s instead turn to the title of this section: 𝑘-linear monoidal functors (𝐹, 𝐽) : 𝑘-Vec𝛼𝐺 →
𝑘-Vec𝛽𝐻 , where 𝐺 and 𝐻 are groups. I claim that 𝐹 defines a (necessarily unique)
group morphism 𝑓 : 𝐺 → 𝐻 such that 𝐹 (𝑘𝑔) ≃ 𝑘𝑓(𝑔) for all 𝑔 ∈ 𝐺. Since 𝐹 is
monoidal, we have 𝐹 (𝑘1) ≃ 𝑘1. We have 𝑘𝑔 ⊗ 𝑘𝑔−1 = 𝑘1. Since 𝐹 is monoidal,
we thus have 𝐹 (𝑘𝑔) ⊗ 𝐹 (𝑘𝑔−1) ≃ 𝐹 (𝑘𝑔 ⊗ 𝑘𝑔−1) ≃ 𝐹 (𝑘1) = 𝑘1. It follows that
dim 𝐹 (𝑘𝑔) = 1, so 𝐹 (𝑘𝑔) ≃ 𝑘𝑓(𝑔) for some 𝑓(𝑔) ∈ 𝐻. It’s clear that 𝑔 ↦→ 𝑓(𝑔) defines
a group morphism 𝑓 : 𝐺→ 𝐻.

Now comes the fun fact. For any 𝑔 ∈ 𝐺 our functor 𝐹 defines a map 𝐹𝑔 : 𝑘 =
End(𝑘𝑔) → End(𝑘𝑓(𝑔)) = 𝑘. The endomorphism sets are 𝑘-algebras by 𝑘-linearity of
the category. Since we assume 𝐹 to be 𝑘-linear, 𝐹𝑔 is a 𝑘-algebra morphism. Hence,
𝐹𝑔 must be the identity! The monoidal structure axiom in this case looks indeed like
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the one written down in Section 2.6, since 𝐹 (𝜔1(𝑔, , 𝑙)) = 𝜔1(𝑔, , 𝑙), and 𝑘-linear
monoidal functors correspond to pairs (𝑓, 𝜇) as claimed.

2.20. Proof of Theorem 2.8.5. It is shown that 𝐿 : 𝒞 → 𝒞≀ is a monoidal functor
and that it is an equivalence of ordinary categories. Hence, by the remark above, it
is already a monoidal equivalence.

2.21. Remark 2.8.6. A monoidal category which is monoidal isomorphic to a strict
one is also strict. This is why 𝒞𝜔

𝐺(𝐴) is not isomorphic to a strict monoidal category.

2.22. Typo in Exercise 2.9.1. It’s the (𝑛− 1)-st Catalan number 𝐶𝑛−1.

2.23. Remark 2.10.3. I think the equation *(𝑋*) ≃ 𝑋 ≃ (*𝑋)* implicitly assumes
uniqueness of left and right dual, which is proven only later in Proposition 2.10.5.

2.24. Typo in Remark 2.10.9. in the last parenthesis it should be −⊗ *𝑉 , not
−⊗ 𝑉 *.

2.25. Example 2.10.2. The “contraction” ev𝑉 : 𝑉 *⊗𝑉 → 𝕜 is the map 𝑓⊗𝑣 ↦→ 𝑓(𝑣);
the “usual embedding” 𝕜 → 𝑉 ⊗ 𝑉 * is the map 1 ↦→

∑︀
𝑖 𝑣𝑖 ⊗ 𝑣*𝑖 , where (𝑣𝑖) is a basis

of 𝑉 with dual basis (𝑣*𝑖 ), this being independent of the choice of basis.

2.26. Typos in paragraph after Example 2.10.14. It is by Exercise 2.10.7(b),
not 2.10.7(ii). The same paragraph: we have Hom(𝑊 *, 𝑉 *) ≃ Hom(𝑊 * ⊗ 1, 𝑉 *) ≃
Hom(1,𝑊 ⊗ 𝑉 *) ≃ Hom(1⊗ 𝑉,𝑊 ) ≃ Hom(𝑉,𝑊 ) by (2.50) and (2.49). This shows
that the functor (−)* is fully faithful.

2.27. Example 2.12.6. “A monoidal category is the same thing as a 2-category with
one object.” I think here one needs to add “strict” or “up to monoidal equivalence”.

3. Chapter 3 : ℤ+-rings

3.1. First definitions in Section 3.1. Several new terms are introduced; here’s
a summary:

∙ A ℤ+-ring is a ring 𝐴 with a fixed ℤ-basis which has non-negative structure
constants and such that 1 is a non-negative linear combination of the basis
elements.

∙ A ℤ+-ring is unital if 1 itself is a basis element.
∙ A ℤ+-ring 𝐴 is based if there’s an involution * on the basis which extends

to a ring anti-involution of 𝐴 and 𝜏(𝑏𝑖𝑏𝑗) = 𝛿𝑖,𝑖* , where 𝜏(𝑏𝑖) = 𝛿𝑖∈𝐼0 . The
latter condition means that in any product 𝑏𝑖𝑏𝑗 there is no basis element
from 𝐼0 if 𝑗 ̸= 𝑖* and if 𝑗 = 𝑖* there is a unique basis element from 𝐼0, which
then occurs with multiplicity 1.

∙ A multifusion ring is a based ring with a finite basis.
∙ A fusion ring is a unital multifusion ring.
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3.2. Exercise 3.1.5(i). Let 1 =
∑︀

𝑗 𝑎𝑗𝑏𝑗 . Then

(3.1) 𝑏𝑖 = 𝑏𝑖 · 1 =
∑︁
𝑗

𝑎𝑗𝑏𝑖𝑏𝑗 =
∑︁
𝑗

𝑎𝑗

(︃∑︁
𝑘

𝑐𝑘𝑖𝑗𝑏𝑘

)︃
=
∑︁
𝑘

⎛⎝∑︁
𝑗

𝑎𝑗𝑐
𝑘
𝑖𝑗

⎞⎠ .

Hence,

(3.2)
∑︁
𝑗

𝑎𝑗𝑐
𝑘
𝑖𝑗 =

{︂
1 if 𝑘 = 𝑖
0 else.

For 𝑗 ∈ 𝐼0 we have 𝑎𝑗 > 0 and so we must have 𝑐𝑘𝑖𝑗 = 0 if 𝑗 ∈ 𝐼𝑜 and 𝑘 ̸= 𝑖. Hence,
𝑏𝑖𝑏𝑗 = 𝑐𝑖𝑖𝑗𝑏𝑖 for 𝑗 ∈ 𝐼0. In particular, 𝑏2𝑖 = 𝑐𝑖𝑖𝑖𝑏𝑖 and since 𝑎𝑖 > 0, it follows from the
equation above that 𝑎𝑖 = 1 = 𝑐𝑖𝑖𝑖. In particular, 𝑏2𝑖 = 𝑏𝑖. Moreover, it then follows
that 𝑐𝑖𝑖𝑗 = 0 for 𝑖 ̸= 𝑗 ∈ 𝐼0, so 𝑏𝑖𝑏𝑗 = 0.

Note that we have shown that 𝑎𝑖 = 0 for all 𝑖 ∈ 𝐼0, i.e., 1 =
∑︀

𝑖∈𝐼0
𝑏𝑖. Hence,

Proposition 3.1.4 holds actually for any ℤ+-ring already.

3.3. Exercise 3.1.5(ii). Let 𝐴 be a ℤ+-ring. To make this into a based ring we
need an involution *. But there is at most one choice for this. We need to look at
the multiplication table of the 𝑏𝑖𝑏𝑗 . For each 𝑖 there must be a unique index 𝑖* ∈ 𝐼
such that 𝑏𝑖𝑏*𝑖 contains a single basis element from 𝐼0, and this with multiplicity 1.
Then only 𝑖 ↦→ 𝑖* can be the involution of a based algebra (and what remains to
check is that this is an anti-involution). If the multiplication table does not have
this property, the ring cannot be based. Hence, the involution is a property, not an
additional structure.

3.4. Example 3.1.9(iv). The reason that the ring 𝑅𝐺 of complex representations
of a finite group 𝐺 is a fusion ring is the following. We have (𝑉 ⊗𝑊 )* ≃𝑊 * ⊗ 𝑉 *

by Exercise 2.10.7(b). Hence, (−)* is an anti-involution on 𝑅𝐺. If 𝑉 and 𝑊 are two
irreducible representations, then the multiplicity of ℂ in 𝑉 ⊗𝑊 is

(3.3) [𝑉 ⊗𝑊 : ℂ] = dim Hom𝐺(ℂ, 𝑉 ⊗𝑊 ) = dim Hom𝐺(𝑉
*,𝑊 ) .

Since 𝑉 * and 𝑊 are simple, this is zero whenever 𝑉 * is not isomorphic to 𝑊 . If
𝑉 * is isomorphic to 𝑊 , then this multiplicity is equal to 1 since ℂ is algebraically
closed. Hence, the property for fusion rings is satisfied.

Note that for the formula relating the multiplicity with the dimension of the
Hom-space we need the trivial representation ℂ to be projective. The same is true
over an arbitrary field 𝕜 if and only if Rep𝕜(𝐺) is semisimple, so, if and only if
the characteristic of 𝕜 does not divide the order of 𝐺. For example, as mentioned
in Example 3.1.9(v), for 𝑆3 over any field of characteristic 2 (algebraically closed
or not) the product 𝑉 ⊗ 𝑉 * with the 2-dimensional irreducible representation 𝑉
contains two copies of the trivial representation.

3.5. Example 3.1.9(v). Where is the reference for this?

3.6. Definition 3.3.1. Think of “transitive” in the way that the “orbit” of any
𝑋 ∈ 𝐼 under the action of 𝐼 by left/right multiplication is all of 𝐼, where “orbit”
means we collect all the basis elements in the product.
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3.7. Exercise 3.3.2. We begin with:

Lemma 3.1. Let 𝐴 be a unital based algebra with basis 𝐼. Then 𝑋𝑍 ̸= 0 for any
𝑋,𝑍 ∈ 𝐼.

Proof. Suppose that 𝑋𝑍 = 0. Then also 𝑋*𝑋𝑍 = 0. Since 𝐴 is unital and based,
we have

(𝑋*𝑋)𝑍 =

⎛⎝1 +
∑︁
𝑌 ̸=1

𝑐𝑌𝑋*,𝑋𝑌

⎞⎠𝑍

= 𝑍 +
∑︁
𝑌 ̸=1

𝑐𝑌𝑋*,𝑋

∑︁
𝑈

𝑐𝑈𝑌,𝑍𝑈

= (1 +
∑︁
𝑌 ̸=1

𝑐𝑌𝑋*,𝑋𝑐
𝑍
𝑌,𝑍)𝑍 +

∑︁
𝑈 ̸=𝑍

⎛⎝∑︁
𝑌 ̸=1

𝑐𝑌𝑋*,𝑋𝑐
𝑈
𝑌,𝑍

⎞⎠𝑈.

(3.4)

But 1 +
∑︀

𝑌 ̸=1 𝑐
𝑌
𝑋*,𝑋𝑐

𝑍
𝑌,𝑍 ̸= 0 since all the coefficients are non-negative. Hence,

𝑋*𝑋𝑍 ̸= 0, a contradiction. □

Now, to the exercise. From the lemma we know that 𝑋*𝑍 ≠ 0. Hence, there is
𝑌1 ∈ 𝐼 with 𝑐𝑌1

𝑋*,𝑍 ̸= 0. We have 𝑐𝑌1

𝑋*,𝑍 = 𝑐𝑍
*

𝑌 *
1 ,𝑋* = 𝑐𝑍𝑋,𝑌1

, hence, 𝑍 occurs in 𝑋𝑌1.
This shows that 𝐴 is transitive.

In generalization of this we have:

Lemma 3.2. If 𝐴 is unital and transitive, then 𝑋𝑍 ̸= 0 for any 𝑋,𝑍 ∈ 𝐼.

Proof. Since 𝐴 is unital and transitive, we have 𝑋𝑍 ≠ 0 for any 𝑋,𝑍 ∈ 𝐼. Namely,
suppose that 𝑋𝑍 = 0. We can find 𝑌 ∈ 𝐼 with 𝑍𝑌 = 𝑎1 +

∑︀
𝑈 ̸=1 𝑐

𝑈
𝑍,𝑌 𝑈 with 𝑎 > 0

since 𝐴 is unital and transitive. We then get

0 = 𝑋𝑍𝑌 = 𝑎𝑋 +
∑︁
𝑈 ̸=1

𝑐𝑈𝑍,𝑌𝑋𝑈

= 𝑎𝑋 +
∑︁
𝑈 ̸=1

∑︁
𝑉

𝑐𝑈𝑍,𝑌 𝑐
𝑉
𝑋,𝑈𝑉

=

⎛⎝𝑎+∑︁
𝑈 ̸=1

𝑐𝑈𝑍,𝑌 𝑐
𝑋
𝑋,𝑈

⎞⎠𝑋 +
∑︁
𝑉 ̸=𝑋

⎛⎝∑︁
𝑈 ̸=1

𝑐𝑈𝑍,𝑌 𝑐
𝑉
𝑋,𝑈

⎞⎠𝑉.

(3.5)

The coefficient of 𝑋 is non-zero, so 𝑋𝑌 𝑍 ̸= 0, a contradiction. □

3.8. Frobenius-Perron dimension. For the definition of the Frobenius–Perron
dimension we just need a ℤ+-ring 𝐴. For the properties in Proposition 3.3.6 we then
need unital, transitive, and of finite rank.

4. Chapter 4: Tensor categories

4.1. Definitions of Section 4.1 and 4.2. Again a lot of definitions. Here’s a
summary:

∙ A multiring category is a 𝕜-linear, abelian, locally finite (locally finite
means finite-dimensional Hom-spaces and all objects have finite length),
monoidal category with bilinear and biexact tensor product. If in addition
End𝒞(1) = 𝕜, it’s called a ring category.
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∙ A (multi)tensor category is a (multi)ring category which is also rigid (using
Proposition 4.2.1; I hope that’s correct).

∙ A (multi)fusion category is a (multi)tensor category which is also semisimple
and finite (finite means that it is locally finite, has enough projectives, and
finitely many simples up to isomorphism).

∙ A quasi-tensor functor 𝐹 : 𝒞 → 𝒟 between multiring categories is an exact
and faithful linear functor equipped with a functorial isomorphism 𝐽 : 𝐹 (−)⊗
𝐹 (−) → 𝐹 (− ⊗ −) and 𝐹 (1) ≃ 1. It is a tensor functor if it is monoidal,
i.e., 𝐽 satisfies the coherence diagram. The assumption that the functor is
exact and faithful seem to be imposed only in this book, not in the general
literature.

Moreover: the Grothendieck ring of a multiring category 𝒞 is a ℤ+-ring. It is unital
if and only if 1 ∈ 𝒞 is simple, e.g., if 𝒞 has left duals. It is based if 𝒞 is a semisimple
multitensor category. It is a (multi)fusion ring if 𝒞 is a (multi)fusion category.

4.2. Proof of Proposition 4.2.1. Note that exactness implies additivity already.

4.3. Proof of Proposition 4.2.8. Note that 0⊗ 𝐼2 = 0 by exactness of the tensor
product.

4.4. Proof of Proposition 4.2.10. Frobenius–Perron dimension for monoidal
categories is at this stage not yet defined. I think this proposition needs to come
after Section 4.5.

4.5. Proof of Corollary 4.2.13. This uses the elementary fact that a locally
finite abelian category is semisimple if and only if all objects are projective, see
maybe here.

4.6. Proof of Theorem 4.3.1. Two elementary comments. Since End𝒞(1) is finite-
dimensional by locally finiteness, it’s an artinian ring, so it’s semisimple if and only
if its Jacobson radical is zero. The Jacobson radical is equal to the nilradical since
the ring is artinian. Hence, it is semisimple if and only if it has no non-zero nilpotent
elements. Suppose that 𝑎2 = 0 implies 𝑎 = 0 for any 𝑎. By induction this shows
that the ring has no nilpotent elements. Namely, let 𝑎𝑛 = 0. If 𝑛 is even, we can
write 0 = 𝑎𝑛 = (𝑎

𝑛
2 )2, so 𝑎

𝑛
2 = 0 and then 𝑎 = 0 by induction. If 𝑛 is odd, then

0 = 𝑎𝑛+1 = (𝑎
𝑛+1
2 )2, so 𝑎

𝑛+1
2 = 0 and then 𝑎 = 0 by induction.

The other comment: that 𝐾 ⊗ 1 is a subobject of 1⊗ 1 follows from the exactness
of the tensor product.

4.7. Remark 4.3.4. It’s stated in at the end of Section 4.5 but it may be helpful
to note here already that decomposition can be regarded as an analogue of the
Pierce decomposition of a ring.

4.8. Theorem 4.4.1. The formulation “with simple object 1” is a bit strange; it
should more precisely be “such that the unit object 1 is simple”.
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4.9. Proof of Theorem 4.4.1. Let 𝑉 be a self-extension of 1, so there’s an exact
sequence 0 → 1 → 𝑉 → 1 → 0. In particular, the only constituent of 𝑉 is 1, and
this occurs with multiplicity 2. Hence,

(4.1) 2 = [𝑉 : 1] = dim Hom(𝑃 (1), 𝑉 ) ,

this formula being standard for finite-dimensional algebras.
At the moment I don’t see why the proof doesn’t work with an arbitrary simple

object instead of the unit object (I’m sure it doesn’t).

4.10. Remark 4.5.6. “Then 𝐹 defines a homomorphism of unital ℤ+-rings...”. I
think the unital is wrong here, the categories are just multiring categories, so 1 may
not be simple. I think it should be “...defines a unital homomorphism of ℤ+-rings...”
if there’s a need to include unital at all.

4.11. Definition 4.7.11. I don’t know why there’s a Tr𝐿 in the sentence.

5. Chapter 5: Representation categories of Hopf algebras

5.1. Before Definition 5.2.3. “Moreover, the forget functor Rep(𝐻) → Vec is a
fiber functor.” A fiber functor is only defined on a ring category. Hence, one first
needs to show that Rep(𝐻) is a ring category.

5.2. Reminder Hopf algebra. Here’s a summary (or reminder) of some Hopf
algebra constructions. Let 𝐻 = (𝐻,𝜇, 𝑖,Δ, 𝜖, 𝑆) be a Hopf algebra over a field 𝑘.
The following are again Hopf algebras (Exercises 5.2.5, 5.3.17 and 5.3.19):

𝐻𝑜𝑝 = (𝐻,𝜇𝑜𝑝, 𝑖,Δ, 𝜖, 𝑆−1),

𝐻𝑐𝑜𝑝 = (𝐻,𝜇, 𝑖,Δ𝑜𝑝, 𝜖, 𝑆−1),

𝐻𝑐𝑜𝑝
𝑜𝑝 = (𝐻,𝜇𝑜𝑝, 𝑖,Δ𝑜𝑝, 𝜖, 𝑆),

𝐻* = (𝐻*,Δ*, 𝜖*, 𝜇*, 𝑖*, 𝑆*)

(5.1)

if 𝐻 is finite-dimensional Moreover, if 𝐻 and 𝐺 are Hopf algebras, then so is 𝐻⊗𝑘𝐺
with the following data:

(5.2)

𝜇𝐻⊗𝐺 = (𝜇𝐻 ⊗ 𝜇𝐺) ∘ (𝐼𝑑⊗ 𝜏 ⊗ 𝐼𝑑) : 𝐻 ⊗𝐺⊗𝐻 ⊗𝐺→ 𝐻 ⊗𝐺
𝜂𝐻⊗𝐺 = (𝜂𝐻 ⊗ 𝜂𝐺) ∘ 𝜑−1 : 𝑘 → 𝐻 ⊗𝐺
Δ𝐻⊗𝐺 = (𝐼𝑑⊗ 𝜏 ⊗ 𝐼𝑑) ∘ (Δ𝐻 ⊗Δ𝐺) : 𝐻 ⊗𝐺→ 𝐻 ⊗𝐺⊗𝐻 ⊗𝐺
𝜀𝐻⊗𝐺 = 𝜑 ∘ (𝜀𝐻 ⊗ 𝜀𝐺) : 𝐻 ⊗𝐺→ 𝑘
𝑆𝐻⊗𝐺 = 𝑆𝐻 ⊗ 𝑆𝐺 : 𝐻 ⊗𝐺→ 𝐻 ⊗𝐺

6. Chapter 7: Module categories

6.1. Exercise 7.3.2. A multitensor category is rigid, so has duals. Proposition
7.1.6 now implies that for fixed 𝑋 ∈ 𝒞 the functor 𝑋 ⊗− is right adjoint to 𝑋* ⊗−
and left adjoint to *𝑋 ⊗−. Hence, 𝑋 ⊗− is exact.
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6.2. Proposition 7.3.3. Before the proposition it is argued that the category
End𝑙(ℳ) of left exact endofunctors on ℳ is abelian. Actually, an argument is only
given if ℳ is finite-dimensional comodules over a coalgebra. I don’t understand
this argument yet (especially the ind-completion part, I don’t even know what this
is...). Anyways, believing this, what about arbitrary ℳ? I think here we want to use
this result by Takeuchi from 1.9/1.10 which says that any essentially small locally
finite abelian category over a field is equivalent to the category of finite-dimensional
comodules over a coalgebra. So, for essentially small categories this seems to be fine.
But without this assumption I don’t see how it works. I guess, it’s assumed without
mentioning.

Also, I’m sure that one needs to consider additive endofunctors on ℳ because
the action ⊗ : 𝒞 ×ℳ → ℳ is bilinear.

6.3. Example 7.4.6. The “Obviously, ℳ = End(ℳ)” is too quick for me. Let ℳ =
Vec. By the enriched/linear Yoneda lemma (reference?) the map 𝑉 ↦→ Homℳ(𝑉,−)
is an embedding ℳ → End(ℳ), the latter category being linear endofunctors on
ℳ. By elementary linear algebra we have an isomorphism

(6.1) Homℳ(𝑉 ⊗𝑊,𝑍) ≃ Homℳ(𝑉,Homℳ(𝑊,𝑍)) .

Hence, the embedding maps 𝑉 ⊗𝑊 to Homℳ(𝑉,−) ∘ Homℳ(𝑊,−). Recall that
End(ℳ) is monoidal with tensor product being the composition. The canonical iso-
morphisms above now give a monoidal structure on the embedding ℳ → End(ℳ).
The essential image of this embedding is the category End𝑙(ℳ) of left exact lin-
ear functors. Hence, given a tensor category 𝒞, the 𝒞-module structures on Vec
correspond to tensor functors 𝒞 → Vec.

6.4. Definition 7.5.1. By definition a module category ℳ is already locally finite,
so maybe this addition in the definition is not necessary.

6.5. Paragraph after Definition 7.14.1. Too quick for me! Okay, we can define
𝑅𝑋𝑍 via 𝛾𝑋 = 𝜎 ∘ 𝑅𝑋𝑍 where 𝜎 is the permutation on the factors. But the next
two statements were not clear to me.

The second statement is that “𝑅𝐻𝑍 commutes with the right multiplication by
elements in the first component.” Let’s see why. For  ∈ 𝐻 let 𝜌 : 𝐻 → 𝐻 be right
multiplication by . Then

(6.2) 𝜎 ∘ (𝜌 ⊗ id𝑍) = (id𝑍 ⊗ 𝜌) ∘ 𝜎 .
Moreover, by functoriality of 𝛾𝐻 applied to 𝜌 the diagram

(6.3) 𝐻 ⊗ 𝑍
𝛾𝐻 //

𝜌⊗id𝑍

��

𝑍 ⊗𝐻

id𝑍⊗𝜌

��
𝐻 ⊗ 𝑍

𝛾𝐻 // 𝑍 ⊗𝐻

commutes, i.e.,

(6.4) 𝛾𝐻 ∘ (𝜌 ⊗ id𝑍) = (id𝑍 ⊗ 𝜌) ∘ 𝛾𝐻 .

Applying 𝜎−1 to this yields

(6.5) 𝜎−1 ∘ 𝛾𝐻 ∘ (𝜌 ⊗ id𝑍) = 𝜎−1 ∘ (id𝑍 ⊗ 𝜌) ∘ 𝛾𝐻 ,

hence

(6.6) 𝑅𝐻𝑍 ∘ (𝜌 ⊗ id𝑍) = (𝜌 ⊗ id𝑍) ∘ 𝜎−1 ∘ 𝛾𝐻 = (𝜌 ⊗ id𝑍) ∘𝑅𝐻𝑍 .
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This is precisely the claim.

6.6. Exercise 7.14.2. The symbols 𝑅12, 𝑅13, and 𝑅23 are actually never defined
in the book. I believe they come from the following. We fix two 𝑘-algebras 𝑋,𝑌 and
an element 𝑅 ∈ 𝑋 ⊗ 𝑌 . We fix another 𝑘-algebra 𝑍. We then have the following
three maps:

(6.7) 𝜑12 : 𝑋 ⊗ 𝑌 → 𝑋 ⊗ 𝑌 ⊗ 𝑍 , 𝑥⊗ 𝑦 ↦→ 𝑥⊗ 𝑦 ⊗ 1

(6.8) 𝜑13 : 𝑋 ⊗ 𝑌 → 𝑋 ⊗ 𝑍 ⊗ 𝑌 , 𝑥⊗ 𝑦 ↦→ 𝑥⊗ 1⊗ 𝑦

(6.9) 𝜑23 : 𝑋 ⊗ 𝑌 → 𝑍 ⊗𝑋 ⊗ 𝑌 , 𝑥⊗ 𝑦 ↦→ 1⊗ 𝑥⊗ 𝑦 .

Now, define

(6.10) 𝑅12 := 𝜑12(𝑅) , 𝑅13 := 𝜑13(𝑅) , 𝑅23 := 𝜑23(𝑅) .

7. Chapter 8: Braided categories

7.1. After Definition 8.1.7. I think —enhancing my comment for Section 2
above— one can show that if a (𝐹, 𝐽) : 𝒞 → 𝒞′ is a braided monoidal functor such
that 𝐹 is an equivalence of categories, then any quasi-inverse of 𝐹 is also braided
monoidal.

7.2. Enhancing Proposition 8.1.10. A braiding on a strict monoidal category is
precisely a 𝑐 satisfying the Yang–Baxter equation (8.6).

7.3. Section 8.3. The correspondence between 𝑅-matrices and braidings is unfor-
tunately not so nicely carried out in my opinion (I was actually a bit lost). There
are really wonderful lecture notes by C. Schweigert [8] where all this is explained
completely and nicely. Here’s a summary. First of all, recall from my comments to
Section 5 that if 𝐴 is a bialgebra, then so is 𝐴⊗𝐴. If 𝑅 = 𝑅(1) ⊗𝑅(2) is an element
of 𝐴⊗𝐴 (in Sweedler notation), there are three ways to view it as an element of
𝐴⊗𝐴⊗𝐴:

(7.1) 𝑅12 := 𝑅(1) ⊗𝑅(2) ⊗ 1 , 𝑅13 := 𝑅(1) ⊗ 1⊗𝑅(2) , 𝑅23 := 1⊗𝑅(1) ⊗𝑅(2) .

Theorem 7.1. Let A be a bialgebra. Then the tensor category Rep(𝐴) is braided if
and only if 𝐴 is quasi-triangular, i.e. there is an invertible element 𝑅 ∈ 𝐴⊗𝐴 such
that
(7.2)
(Δ⊗id𝐴)(𝑅) = 𝑅13𝑅23 , (id𝐴⊗Δ)(𝑅) = 𝑅13𝑅12 , Δ𝑜𝑝(𝑎) = 𝑅Δ(𝑎)𝑅−1 ∀𝑎 ∈ 𝐴 .

Both structures (braidings and such elements 𝑅) are in one-to-one correspondence.

Remark 7.2. The element 𝑅 is called universal 𝑅-matrix. The last condition is
called quasi-cocommutativity. Schweigert [8] says: “There is no universally accepted
definition for the term quantum group. I would prefer to use the term for quasi-
triangular Hopf algebras. Some authors use it as a synonym for Hopf algebras, some
for certain subclasses of quasi-triangular Hopf algebras.”

Proof. Let (𝐴,𝑅) be quasi-triangular. We need to construct a braiding on Rep(𝐴)
from 𝑅. For 𝑈, 𝑉 ∈ Rep(𝐴) define

(7.3)
𝑐𝑈,𝑉 : 𝑈 ⊗ 𝑉 → 𝑉 ⊗ 𝑈

𝑢⊗ 𝑣 ↦→ 𝜎(𝑅(𝑢⊗ 𝑣)) = 𝑅(2)𝑣 ⊗𝑅(1)𝑢 .
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Here, 𝜎 is the flip in the components. One can check that this is indeed a morphism
of 𝐴-modules. Since 𝑅 is invertible, this map is invertible. One can now prove
the hexagon axioms by direct computation (see [8]). Hence, 𝑐 is a braiding on
Rep(𝐴). Conversely, assume that we are given a braiding 𝑐 on Rep(𝐴). We define
the element 𝑅 by

(7.4) 𝑅 := 𝜎 ∘ 𝑐𝐴,𝐴(1⊗ 1) ∈ 𝐴⊗𝐴 .

One can now show by direct computation (see [8]) that 𝑐 is defined by 𝑅 exactly as
above. Moreover, from the hexagon axioms one obtains the first two relations on 𝑅,
the last one (quasi-cocommutativity) follows essentially from 𝐴-linearity of 𝑐. □

7.4. Section 8.9. The assumption for the whole section is that monoidal categories
are strict. (I don’t agree with the second sentence “Equivalently, we suppress all
associativity and unit constraints.”: suppressing notation doesn’t make things equiv-
alent). However, already the first example (representation categories) is not strict. I
think it’s fine but still... For example, what happens to the relation (8.31)

(7.5) 𝑢𝑋 ⊗ 𝑢𝑌 = 𝑢𝑋⊗𝑌 ∘ 𝑐𝑌,𝑋 ∘ 𝑐𝑋,𝑌

in the non-strict case? Is it the same? Moreover, one needs to assume throughout
the whole section (and also later) that 𝒞 has duals.

7.5. Proposition 8.10.12. I think this needs to be 𝜓 = 𝑢 ∘ 𝜃, not 𝜓 = 𝜃 ∘ 𝑢.

7.6. After Proposition 8.10.12. Maybe the trace should be recalled before proving
the proposition as it’s used in the proof.
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