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1 Introduction

Intuitively, all of you know what a reflection is:

Figure 1: Two reflections in the plane. Source: Wikipedia (CC-BY-2.5)
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Definition 1.1. An orthogonal reflection is:

1. an orthogonal transformation on ℝ𝑛 (i.e. a linear map preserving distances and
angles),

2. which fixes every point of some hyperplane (a subspace of codimension 1),

3. and maps a vector in the orthogonal complement of the hyperplane to its
negative.

We want to study reflections in greater generality, namely over the complex numbers
and over the quaternions (the latter are also called symplectic reflections). The theory
is rich and beautiful with countless of connections to a wide range of mathematical
fields and many open problems for you to solve.

While the theory of complex reflections is well-established, symplectic reflections
are still somewhat exotic. But they gained popularity in the last two decades through
applications in algebraic geometry and representation theory.

An excellent reference on complex reflections is the book Lehrer and Taylor 2009. A
helpful introduction to symplectic reflections is the thesis Schmitt 2023.
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2 Complex reflection groups

2.1 Preliminary remarks on inner products

Throughout, let 𝑉 be a finite-dimensional vector space over ℂ.

A inner product (·, ·) on 𝑉 is a map (·, ·) : 𝑉 × 𝑉 → ℂ such that:

1. (𝑣1 + 𝑣2, 𝑤) = (𝑣1, 𝑤) + (𝑣2, 𝑤) for all 𝑣1, 𝑣2, 𝑤 ∈ 𝑉 ,

2. (𝜆𝑣, 𝑤) = 𝜆 (𝑣, 𝑤) for all 𝑣, 𝑤 ∈ 𝑉 and 𝜆 ∈ ℂ,

3. (𝑣, 𝑤) = (𝑤, 𝑣) for all 𝑣, 𝑤 ∈ 𝑉 , where · denotes complex conjugation,

4. (𝑣, 𝑣) > 0 for all 0 ̸= 𝑣 ∈ 𝑉 .

Note that 1-3 implies

(𝑣, 𝑤1 + 𝑤2) = (𝑣, 𝑤1) + (𝑣, 𝑤2) and (𝑣, 𝜇𝑤) = 𝜇 (𝑣, 𝑤)

for all 𝑣, 𝑤1, 𝑤2 ∈ 𝑉 and 𝜇 ∈ ℂ. Moreover, 3 implies (𝑣, 𝑣) = (𝑣, 𝑣), so (𝑣, 𝑣) ∈ ℝ for
all 𝑣 ∈ 𝑉 so that 4 makes sense.

We say that 𝑔 ∈ GL(𝑉 ) leaves (·, ·) invariant, or that 𝑔 is a unitary transformation,
if

(𝑔𝑣, 𝑔𝑤) = (𝑣, 𝑤)

for all 𝑣, 𝑤 ∈ 𝑉 . We denote byU(𝑉 ) the subgroup ofGL(𝑉 ) of unitary transformations.
Note that this depends on the choice of (·, ·) even though this is not expressed in the
notation.

Example 2.1. Let 𝑒1, . . . , 𝑒𝑛 be the standard basis ofℂ𝑛 and let (·, ·) be an inner product
on ℂ𝑛. The Gram matrix of (·, ·) is the matrix 𝐽 with entries (𝑒𝑖, 𝑒𝑗). For 𝑣, 𝑤 ∈ ℂ𝑛 with
coordinates 𝜆𝑖 and 𝜇𝑖, respectively, we can then write

(𝑣, 𝑤) =

(︃
𝑛∑︁

𝑖=1

𝜆𝑖𝑒𝑖,

𝑛∑︁
𝑗=1

𝜇𝑗𝑒𝑗

)︃
=

𝑛∑︁
𝑖,𝑗=1

𝜆𝑖𝜇𝑗 (𝑒𝑖, 𝑒𝑗) = 𝑣𝑇𝐽𝑤 .

The matrix 𝐽 is hermitian (𝐽 = 𝐽
𝑇
) and positive definite. Conversely, any hermitian

positive definite matrix defines an inner product by the above formula. In particular,
for 𝐽 = 𝐼 being the identity we obtain the standard inner product

⟨𝑣, 𝑤⟩ =
𝑛∑︁

𝑖=1

𝜆𝑖𝜇𝑖 = 𝑣𝑇𝑤 .

The linear map ℂ𝑛 → ℂ𝑛 defined by a matrix𝑀 ∈ GL𝑛(ℂ) in the standard basis is a
unitary transformation with respect to (·, ·) if and only if

𝐽𝑖𝑗 = (𝑒𝑖, 𝑒𝑗) = (𝑀𝑖,𝑀𝑗) =

(︃
𝑛∑︁

𝑘=1

𝑀𝑖𝑘𝑒𝑘,
𝑛∑︁

𝑙=1

𝑀𝑙𝑗𝑒𝑗

)︃
=

𝑛∑︁
𝑘,𝑙=1

𝑀𝑘𝑖𝐽𝑘𝑙𝑀 𝑙𝑗 = (𝑀𝑇𝐽𝑀)𝑖𝑗
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i.e.
𝐽 =𝑀𝑇𝐽𝑀 . (2.1)

In case 𝐽 = 𝐼 such a matrix is called a unitary matrix (i.e. 𝐼 =𝑀𝑇𝑀 ) and we denote
by U𝑛(ℂ) the subgroup of GL𝑛(ℂ) of unitary matrices, called the unitary group.

We thus have a complete classification of inner products and their unitary transfor-
mations on ℂ𝑛, and thus on any abstract vector space 𝑉 after choosing a basis.

Even better, the Gram–Schmidt orthonormalization process yields for any inner product
on ℂ𝑛 with Gram matrix 𝐽 an invertible matrix 𝐴 such that

𝐼 = 𝐴𝑇𝐽𝐴 (2.2)

i.e. 𝐽 is transformed to the standard inner product. If the matrix𝑀 is unitary with
respect to 𝐽 , i.e. 𝐽 =𝑀𝑇𝐽𝑀 , then

𝐼 = 𝐴𝑇𝐽𝐴 = 𝐴𝑇
(︀
𝑀𝑇𝐽𝑀

)︀
𝐴 = 𝐴𝑇𝑀𝑇 (𝐴𝑇 )−1𝐴𝑇𝐽𝐴𝐴

−1
𝑀𝐴

= (𝐴−1𝑀𝐴)𝑇 𝐼(𝐴−1𝑀𝐴) ,

i.e. 𝐴−1𝑀𝐴 is a unitary matrix.

Hence, up to change of basis (i.e. conjugation with an invertible matrix) there is
just one inner product, namely the standard one, and there is just one unitary group,
namely U𝑛(ℂ).

Nonetheless, it is of advantage to work with abstract vector spaces and abstract inner
products because things may look easier with a non-standard inner product (note that
orthonormalization will usually introduce square roots). Here is an example.

Lemma 2.2. Let 𝐺 be a finite subgroup of GL(𝑉 ). Then there is a 𝐺-invariant inner
product on 𝑉 , i.e., 𝐺 ⊂ U(𝑉 ) with respect to this inner product.

Proof. Let (·, ·) be any inner product on 𝑉 (exists by the discussion above) and define
a new form by

[𝑣, 𝑤] =
∑︁
𝑔∈𝐺

(𝑔𝑣, 𝑔𝑤) .

Then [·, ·] is hermitian and

[𝑣, 𝑣] =
∑︁
𝑔∈𝐺

(𝑔𝑣, 𝑔𝑣) > 0

is a sum over positive real numbers if 𝑣 ̸= 0, so [·, ·] is an inner product. Finally, if
𝑕 ∈ 𝐺, then as 𝑔 runs through 𝐺, so does 𝑔𝑕 and therefore

[𝑕𝑣, 𝑕𝑤] =
∑︁
𝑔∈𝐺

(𝑔𝑕𝑣, 𝑔𝑕𝑤) =
∑︁
𝑔∈𝐺

(𝑔𝑣, 𝑔𝑤) = [𝑣, 𝑤] ,

so [·, ·] is 𝐺-invariant.
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Example 2.3. Consider the group 𝐺 in GL2(ℂ) generated by

𝑠 =

(︂
−1 1
0 1

)︂
and 𝑡 =

(︂
1 0
1 −1

)︂
.

These matrices are not unitary. You can check that

𝐺 = {1, 𝑠, 𝑡, 𝑠𝑡, 𝑡𝑠, 𝑠𝑡𝑠 = 𝑡𝑠𝑡} .

You can calculate that the Gram matrix 𝐽 of the 𝐺-invariant inner product produced
from the standard inner product is

𝐽 =

(︂
8 −4
−4 8

)︂
.

Now 𝑠 and 𝑡 and unitary transformations with respect to this new inner product. The
Gram–Schmidt orthonormalization process yields the transformation matrix

𝐴 =

(︃
1√
8

1
2
√
6

0 1√
6

)︃
.

The matrices 𝑠 and 𝑡 above transform to

𝑠′ =

(︂
−1 0
0 1

)︂
and 𝑡′ =

1

2

(︂
1

√
3√

3 −1

)︂
.

While these matrices are now unitary, they contain fractions and even square roots.

2.2 Reflections

The fix space of 𝑔 ∈ GL(𝑉 ) is the subspace

{𝑣 ∈ 𝑉 | 𝑔𝑣 = 𝑣} = Ker(1− 𝑔) .

Definition 2.4. A linear transformation 𝑔 ∈ GL(𝑉 ) is a (complex) reflection if it is of
finite order and its fix space is a hyperplane. The hyperplane is called the reflecting
hyperplane. A reflection in U(𝑉 ) is called a unitary reflection.

Remark 2.5. The identity is not a reflection by definition (its fix space is not a hyper-
plane but the whole space).

Example 2.6. The linear transformations on ℂ2 defined by the matrices

𝑠 =

(︂
−1 1
0 1

)︂
, 𝑡 =

(︂
1 0
1 −1

)︂
, and 𝑠𝑡𝑠 =

(︂
0 −1
−1 0

)︂
considered in Example 2.3 are reflections (of order 2). You can compute that

𝐻𝑠 =

⟨(︂
1
2

)︂⟩
, 𝐻𝑡 =

⟨(︂
2
1

)︂⟩
, 𝐻𝑠𝑡𝑠 =

⟨(︂
1
−1

)︂⟩
are the reflecting hyperplanes.
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Example 2.7. The fix space of

𝑡 =

(︂
1 1
0 1

)︂
is a hyperplane but 𝑡 is of infinite order. Such transformations are called transvections.
The theory of transvections is quite different and we will not consider this here.

Example 2.8. For any root of unity 𝜁 the (1 × 1)-matrix (𝜁) ∈ GL1(ℂ) is a unitary
reflection with (the reflecting hyperplane is the origin). Hence, reflections can be of
arbitrary (finite) order.

Lemma 2.9. Let 𝑔 ∈ 𝑈(𝑉 ). Then the decomposition

𝑉 = Ker(1− 𝑔)⊕Ker(1− 𝑔)⊥ , (2.3)

where (−)⊥ denotes the orthogonal complement, is 𝑔-stable. Moreover,

Ker(1− 𝑔)⊥ = Im(1− 𝑔) . (2.4)

Proof. It is clear thatKer(1−𝑔) is 𝑔-stable. If 𝛼 ∈ Ker(1−𝑔)⊥, then for 𝑣 ∈ Ker(1−𝑔)
we have

(𝑔𝛼, 𝑣) = (𝑔𝛼, 𝑔𝑣) = (𝛼, 𝑣) = 0 ,

so 𝑔𝛼 ∈ Ker(1− 𝑔)⊥.

Let 𝑢 ∈ Im(1− 𝑔), so 𝑢 = (1− 𝑔)𝑣 for some 𝑣 ∈ 𝑉 . If 𝑤 ∈ Ker(1− 𝑔) then

(𝑢,𝑤) = (𝑣 − 𝑔𝑣, 𝑤) = (𝑣, 𝑤)− (𝑔𝑣, 𝑤) = (𝑔𝑣, 𝑔𝑤)− (𝑔𝑣, 𝑤)

= (𝑔𝑣, 𝑔𝑤 − 𝑤) = (𝑔𝑣, 0) = 0 ,

so 𝑢 ∈ Ker(1− 𝑔)⊥ and therefore Im(1− 𝑔) ⊆ Ker(1− 𝑔)⊥. Since

dim(Im(1− 𝑔)) = dim(𝑉 )− dim(Ker(1− 𝑔)) = dimKer(1− 𝑔)⊥ ,

equality follows.

Since a reflection 𝑔 is of finite order by definition, the group ⟨𝑔⟩ ⊂ GL(𝑉 ) is finite.
Hence, by Lemma 2.2 𝑔 is unitary with respect to some inner product (·, ·) on 𝑉 . By
Lemma 2.9 we thus have a 𝑔-stable decomposition

𝑉 = Ker(1− 𝑔)⊕Ker(1− 𝑔)⊥ = Ker(1− 𝑔)⊕ Im(1− 𝑔) .

Since Ker(1 − 𝑔) is of dimension 𝑛 − 1, the complement Ker(1 − 𝑔)⊥ = Im(1 − 𝑔)
is 1-dimensional. A non-zero element 𝛼 in this space is called a root of 𝑔. We then
have

𝑔𝛼 = 𝜁𝛼

for some root of unity 𝜁 of order equal to the order of 𝑔 and we can thus find a basis
of 𝑉 such that 𝑔 is the diagonal matrix

𝑔 = (1, . . . , 1, 𝜁) .
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It follows that a unitary reflection is uniquely determined by its reflecting hyperplane
(equivalently, by the line orthogonal to it, i.e., a choice of root up to scalar) and by its
non-trivial eigenvalue.

The unitary reflection with non-trivial eigenvalue 𝜁 fixing the hyperplane orthogonal
to a non-zero vector 𝛼 is given by the formula

𝑟𝛼,𝜁(𝑣) = 𝑣 − (1− 𝜁)
(𝑣, 𝛼)

(𝛼, 𝛼)
𝛼 . (2.5)

Example 2.10. Roots for the reflections

𝑠 =

(︂
−1 1
0 1

)︂
, 𝑡 =

(︂
1 0
1 −1

)︂
, and 𝑠𝑡𝑠 =

(︂
0 −1
−1 0

)︂
considered in Example 2.6 are

𝛼𝑠 =

(︂
1
0

)︂
, 𝛼𝑡 =

(︂
0
1

)︂
, 𝛼𝑠𝑡𝑠 =

(︂
1
1

)︂
.

Note that the roots are not orthogonal to their respective hyperplane with respect to
the standard inner product. But they are orthogonal with respect to the inner product
computed in Example 2.3.

Remark 2.11. We say that 𝑔 ∈ GL(𝑉 ) can be defined over a subring 𝑅 of ℂ if there is
a basis of 𝑉 such that the matrix of 𝑔 in this basis has entries in 𝑅.

Let 𝑔 be a reflection of order 𝑚. It follows from the discussion above that 𝑔 can be
defined over ℤ[𝜁] where 𝜁 is a primitive 𝑚-th root of unity.

Since the trace of a matrix is invariant under conjugation (change of basis), the trace
of 𝑔 is equal to 𝑛− 1 + 𝜁 , where 𝑑 = dim(𝑉 ). It follows that 𝑅 must contain 𝜁 , hence
ℤ[𝜁] is the minimal subring of ℂ over which 𝑔 can be defined.

In particular, 𝑔 can be defined over ℤ (or, equivalently, ℚ or ℝ), if and only if it is of
order 2.

Remark 2.12. A real (orthogonal) reflection can be defined analogously to Definition 2.4
over the real numbers. Lemma 2.2, Lemma 2.9, and the whole discussion above hold
analogously. In particular, a real reflection maps a root to its negative. Hence, this
definition coincides with Definition 1.1 from the beginning.

After extending scalars from ℝ to ℂ, a real (orthogonal) reflection becomes a complex
(unitary) reflection of order 2. Conversely, a complex reflection of order 2 is the scalar
extension of a real reflection after an appropriate choice of basis.

Some authors (like Bourbaki) say pseudoreflection for a complex reflection and mean
by reflection always a real reflection.
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2.3 Reflection groups

Definition 2.13. A (complex) reflection group, respectively unitary reflection group, is a
finite subgroup of GL(𝑉 ), respectively of U(𝑉 ), that is generated by reflections.

Remark 2.14. Recall that by Lemma 2.2 any reflection group is a unitary reflection
group with respect to some inner product.

Remark 2.15. We consider the trivial group {1} ⊂ GL𝑛(ℂ) as a reflection group
(generated by its set of reflections, which is empty).

Remark 2.16. It is not necessarily true that a finite set of reflections (which are of
finite order by definition) generate a finite group. For example, both

𝑠 =

(︂
1 −1
0 −1

)︂
and

(︂
1 0
0 −1

)︂
are reflections of order 2. But

𝑠𝑡 =

(︂
1 1
0 1

)︂
, so (𝑠𝑡)𝑚 =

(︂
1 𝑚
0 1

)︂
.

Remark 2.17. A reflection group is a matrix group, i.e., a subgroup of some GL(𝑉 ). To
put the group structure in focus on can also consider an abstract finite group 𝐺 and
define a reflection representation of 𝐺 to be a faithful (i.e., injective) representation
𝜌 : 𝐺→ GL(𝑉 ) of 𝐺 such that the image of 𝜌 is generated by reflections.

For 𝐺 ⊂ GL(𝑉 ) we call the embedding 𝐺→ GL(𝑉 ) the natural representation.

Example 2.18. The linear transformations on ℂ2 defined by the matrices

𝑠 =

(︂
−1 1
0 1

)︂
and 𝑡 =

(︂
1 0
1 −1

)︂
considered in Example 2.3 and Example 2.6 generate a finite subgroup of GL2(ℂ)
since 𝑠𝑡𝑠 = 𝑡𝑠𝑡. Since 𝑠 and 𝑡 are reflections, this is a reflection group in GL2(ℂ).
In fact, this is a 2-dimensional reflection representation of the symmetric group 𝑆3.
There is one further reflection in this group, namely 𝑠𝑡𝑠 = 𝑡𝑠𝑡.

Example 2.19. Let 𝜁 = 𝜁𝑚 be a primitive𝑚-th root of unity. The linear transformations
on ℂ2 defined by the matrices

𝑠 =

(︂
0 1
1 0

)︂
and 𝑡 =

(︂
0 𝜁
𝜁−1 0

)︂
are reflections of order 2. We have

𝑠𝑡 =

(︂
𝜁−1 0
0 𝜁

)︂
.

The order of 𝑠𝑡 is thus equal to 𝑚 and therefore 𝑠 and 𝑡 generate a finite subgroup
in GL2(ℂ). Since 𝑠 and 𝑡 are reflections, this is a reflection group. In fact, this is a
2-dimensional reflection representation of the dihedral group of order 2𝑚.
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Example 2.20. For 𝑚 > 1 let 𝜇𝑚 be the group of 𝑚-th roots of unity, a cyclic group of
order𝑚. We fix a generator 𝜁 = 𝜁𝑚, i.e., a primitive𝑚-th root of unity. Let 𝜇𝑚 → GL1(ℂ)
be the map sending 𝜁 to the (1 × 1)-matrix (𝜁). This is a 1-dimensional unitary
reflection representation of 𝜇𝑚. We denote the image by 𝜇mat𝑚 . Note that any element
̸= 1 in 𝜇mat𝑚 is a reflection.

Remark 2.21. An abstract group may have several non-isomorphic reflection represen-
tations. For example, for any 𝑘 with gcd(𝑘, 𝑛) = 1 we have a 1-dimensional reflection
representation 𝜇𝑚 → GL1(ℂ) sending 𝜁 to the matrix (𝜁𝑘), and these representations
are pairwise non-isomorphic (their characters are distinct). But note that the image is
always the same subgroup 𝜇mat𝑚 of GL1(ℂ).

Example 2.22. Let 𝜁 = 𝜁3 be a primitive 3rd root of unity. The linear transformations
on ℂ2 defined by the matrices

𝑠 =

(︂
𝜁 0
𝜁−1 1

)︂
and 𝑡 =

(︂
1 −𝜁2
0 𝜁

)︂
are reflections of order 3. Since 𝑠𝑡𝑠 = 𝑡𝑠𝑡, they generate a finite subgroup of GL2(ℂ).
Since 𝑠 and 𝑡 are reflections, this is a reflection group. The order of this group is 24
and it is denoted by 𝐺4. This is in fact a 2-dimensional reflection representation of
the binary tetrahedral group 2𝑇 , which is an extension of the tetrahedral group 𝑇 by a
cyclic group of order 2.

2.4 The field of definition

We say that 𝐺 ⊂ GL(𝑉 ) can be defined over a subring 𝑅 of ℂ if one can find a basis
of 𝑉 such that the matrix of every element of 𝐺 in this basis has entries in 𝑅.

Whereas a single reflection 𝑔 can always be defined over a ring ℤ[𝜁] after Remark 2.11,
this is a much more subtle problem for a reflection group because one needs to find
one nice basis for all reflections simultaneously.

Continuing Remark 2.11, the minimal possible subfield of ℂ over which 𝐺 could
theoretically be defined is the field ℚ(𝐺) generated by the traces of elements of 𝐺.
We call this the field of definition of 𝐺.

In Example 2.19 the two reflections 𝑠 and 𝑡 are of order two, hence they can each be
defined over ℤ. But they cannot be defined over ℤ (orℚ) simultaneously: we have

𝑠𝑡 =

(︂
𝜁−1 0
0 𝜁

)︂
which has trace equal to 𝜁 + 𝜁−1 = 2 cos 2𝜋

𝑚
, which is not a rational number for𝑚 > 2.

So, the field of definition is a proper extension of ℚ and therefore the group cannot
be defined over ℚ. In fact, ℚ(𝐺) = ℚ(𝜁 + 𝜁−1) and 𝐺 can be defined over ℚ(𝐺).

In general, a complex representation 𝜌 : 𝐺→ GL(𝑉 ) of a finite group 𝐺 can always
be defined over some algebraic number field 𝐾 . Namely, since the algebraic closure
ℚ of ℚ is algebraically closed, it follows from general Wedderburn theory (see, e.g.,
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Lam 1991, §7) that all complex representations of 𝐺 can be defined over ℚ. Since,
the matrices 𝜌(𝑔) have just finitely many entries and there are only finitely many such
matrices, they generate a finite extension 𝐾 of ℚ.

It is a classical fact by Brauer 1947 that one can take 𝐾 to be a cyclotomic field ℚ(𝜁).
Explicitly, ℚ(𝜁𝑚) for 𝑚 the exponent of 𝐺 will do.

In particular, ℚ(𝐺) is a finite extension of ℚ contained in some cyclotomic field.

The Schur index of𝐺 is the minimal number𝑚 such that there is a degree-𝑚 extension
field 𝐾 of ℚ(𝐺) such that 𝐺 can be defined over 𝐾 .

If 𝐺 ⊂ GL(𝑉 ) is a complex reflection group, then 𝐺 can indeed be defined overℚ(𝐺),
i.e., the Schur index is 1. This has been proven by Clark and Ewing 1974.

It is even possible to define 𝐺 over the ring of integers ℤ(𝐺) in ℚ(𝐺). This has been
proven by Nebe 1999.1

It is in fact true that any complex representation can be defined over ℚ(𝐺). This has
been proven by Benard 1976. See also Bessis 1997 for a shorter proof.2

Remark 2.23. A real (orthogonal) reflection group is defined analogously to Defini-
tion 2.13 over the real numbers. After extending scalars from ℝ to ℂ a real (orthog-
onal) reflection group becomes a complex (unitary) reflection group all of whose
reflections are of order 2. It is a classical fact, see Humphreys 1990, that any real
reflection group has the structure of a finite Coxeter group and that conversely any
finite Coxeter group admits an orthogonal reflection representation, so:

real reflection groups = finite Coxeter groups .

Moreover,

rational reflection groups = finite crystallographic Coxeter groups = Weyl groups.

It is an important theme in the theory of complex reflection groups to study which
properties of Coxeter groups can be generalized in some way to complex reflection
groups.

Remark 2.24. It is now not surprising anymore that in contrast to a single reflection,
a complex reflection group all of whose reflections are of order 2 is not necessarily
defined over the real numbers. Here is an example.

Let 𝜁 = 𝜁8 be a primitive 8-th root of unity and set 𝜔 = 𝜁3 + 𝜁 . You can check that the
linear transformations on ℂ2 defined by the matrices

𝑠 =

(︂
−1 0

−𝜔 + 1 1

)︂
, 𝑡 =

(︂
1 𝜔 + 1
0 −1

)︂
, 𝑢 =

(︂
𝜔 − 1 −2
−𝜔 − 1 −𝜔 + 1

)︂
are reflections of order 2. They satisfy the relations (𝑠𝑡𝑢)4 = (𝑡𝑢𝑠)4 = (𝑢𝑠𝑡)4 and
from this you can conclude that they generate a finite subgroup of GL2(ℂ). Since the
generators are reflections, this is a reflection group. The order of this group is 48

1The proof uses the classification of complex reflection groups and case-by-case analysis.
2Both proofs use the classification.
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and it is denoted by 𝐺12. This is in fact a 2-dimensional reflection representation of
the binary octahedral group 2𝑂, which is an extension of the octahedral group 𝑂 by a
cyclic group of order 2. One can show that there are 12 reflections and all of them
are of order 2. But

𝑠𝑡𝑢 =

(︂
𝜔 −1
−1 0

)︂
has trace equal to 𝜔 /∈ ℝ, hence this group cannot be defined over ℝ.

2.5 The combinatorial reflection groups

2.5.1 The symmetric group

Let 𝑛 > 1 and consider the action of the symmetric group 𝑆𝑛 on ℂ𝑛 by coordinate
permutations, i.e

𝜎𝑒𝑖 = 𝑒𝜎(𝑖) ,

where the 𝑒𝑖 are the standard basis vectors.

The matrix𝑀𝜎 for the action of 𝜎 is a permutation matrix, i.e., a square matrix which
has exactly one non-zero entry in each row and each column, and this entry is equal
to 1, e.g., ⎛⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

⎞⎟⎟⎟⎟⎠ =̂

(︂
1 2 3 4 5
1 3 5 2 4

)︂
.

Conversely, a permutation matrix corresponds to a unique permutation.

We thus have a faithful 𝑛-dimensional representation

𝑆𝑛 → GL𝑛(ℂ)

whose image 𝑆perm𝑛 is the group of permutation matrices of size 𝑛. A permutation matrix
is unitary, so this is a subgroup of U𝑛(ℂ).

Lemma 2.25. 𝑆perm
𝑛 is a unitary reflection group.

Proof. Let 𝜎 = (𝑖, 𝑗) with 𝑖 < 𝑗 be a transposition and let𝑀𝑖𝑗 be the corresponding
permutationmatrix. We have𝑀𝑖𝑗𝑒𝑘 = 𝑒𝑘 for all 𝑘 ̸= 𝑖, 𝑗. Moreover,𝑀𝑖𝑗(𝑒𝑖+𝑒𝑗) = 𝑒𝑖+𝑒𝑗
and𝑀𝑖𝑗(𝑒𝑖 − 𝑒𝑗) = 𝑒𝑗 − 𝑒𝑖. Hence,𝑀𝑖𝑗 is a reflection with root 𝑒𝑖 − 𝑒𝑗 and reflecting
hyperplane spanned by the 𝑒𝑘 for 𝑘 ̸= 𝑖, 𝑗 and by 𝑒𝑖 + 𝑒𝑗 . Since 𝑆𝑛 is generated by
transpositions, it follows that 𝑆perm

𝑛 is a reflection group.

2.5.2 Wreath products

We will now mix the group 𝑆perm
𝑛 of permutation matrices of size 𝑛 with the cyclic

group 𝜇𝑚 of 𝑚-th roots of unity as follows.
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The group 𝑆𝑛 acts on the product group 𝜇𝑛
𝑚 = 𝜇𝑚 × · · · × 𝜇𝑚 by coordinate permuta-

tions
𝜎𝜃 = (𝜃𝜎(1), . . . , 𝜃𝜎(𝑛)) , 𝜎 ∈ 𝑆𝑛, 𝜃 ∈ 𝜇𝑛

𝑚 .

We can now form the wreath product 𝜇𝑚 ≀𝑆𝑛 which is defined as the semidirect product
𝜇𝑛
𝑚 ⋊𝑆𝑛, i.e., the group with elements of the form (𝜃;𝜎) with 𝜃 ∈ 𝜇𝑛

𝑚 and 𝜎 ∈ 𝑆𝑛, and
multiplication

(𝜃;𝜎)(𝜃′;𝜎′) = (𝜃𝜎𝜃′;𝜎𝜎′) = ((𝜃1𝜃
′
𝜎(1), . . . , 𝜃𝑛𝜃

′
𝜎(𝑛));𝜎𝜎

′) .

We have an action of 𝜇𝑚 ≀ 𝑆𝑛 on ℂ𝑛 by

(𝜃;𝜎)𝑒𝑖 = 𝜃𝜎(𝑖)𝑒𝜎(𝑖) .

This is really a group action since

(𝜃;𝜎) ((𝜃′;𝜎′)𝑒𝑖) = (𝜃;𝜎)𝜃′𝜎′(𝑖)𝑒𝜎′(𝑖) = 𝜃′𝜎′(𝑖)(𝜃;𝜎)𝑒𝜎′(𝑖) = 𝜃′𝜎′(𝑖)𝜃𝜎𝜎′(𝑖)𝑒𝜎𝜎′(𝑖)

and

((𝜃;𝜎)(𝜃′;𝜎′)) 𝑒𝑖 = (𝜃𝜎𝜃′;𝜎𝜎′)𝑒𝑖 = (𝜃𝜎𝜃′)𝜎𝜎′(𝑖)𝑒𝜎𝜎′(𝑖) = 𝜃𝜎𝜎′(𝑖)𝜃
′
𝜎′(𝑖)𝑒𝜎𝜎′(𝑖) .

The matrix𝑀(𝜃;𝜎) for the action of (𝜃;𝜎) is a generalized permutation matrix (or mono-
mial matrix) with entries in 𝜇𝑚, i.e., a square matrix which has exactly one non-zero
entry in each row and each column, and this entry is contained in 𝜇𝑚. Conversely,
any generalized permutation matrix with entries in 𝜇𝑚 corresponds to a unique
pair (𝜃;𝜎).

We thus have a faithful 𝑛-dimensional representation

𝜇𝑛
𝑚 ⋊ 𝑆𝑛 = 𝜇𝑚 ≀ 𝑆𝑛 → GL𝑛(ℂ)

whose image 𝐺(𝑚, 1, 𝑛) is the group of generalized permutation matrices of size 𝑛 with
entries in 𝜇𝑚. A generalized permutation matrix is unitary, so this is a subgroup of
𝑈𝑛(ℂ). The group order is

|𝐺(𝑚, 1, 𝑛)| = 𝑚𝑛𝑛! .

Example 2.26. A few familiar cases:

1. 𝐺(1, 1, 𝑛) = 𝑆perm
𝑛 .

2. 𝐺(𝑚, 1, 1) = 𝜇mat
𝑚 .

3. 𝐺(2, 1, 𝑛) ≃ 𝜇2 ≀ 𝑆𝑛 is the group of signed permutations, also known as the Weyl
group of type 𝐵.

Remark 2.27. Note that 𝐺(𝑚, 1, 𝑛) is the trivial group for 𝑚 = 𝑛 = 1. This is why we
will assume 𝑚𝑛 > 1 in the following.

Lemma 2.28. If 𝑚𝑛 > 1, then 𝐺(𝑚, 1, 𝑛) is a unitary reflection group.
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Proof. The wreath product 𝜇𝑚 ≀ 𝑆𝑛 is by definition equal to the semidirect product
𝜇𝑛
𝑚 ⋊ 𝑆𝑛. Every element can thus be uniquely written in the form 𝜃𝜎 for 𝜃 ∈ 𝜇𝑛

𝑚 and
𝜎 ∈ 𝑆𝑛. The symmetric group 𝑆𝑛 is generated by transpositions and we already know
from Lemma 2.25 that these map to reflections under 𝜇𝑚 ≀𝑆𝑛 → GL𝑛(ℂ). The element
𝜃 = (1, 1, . . . , 1, 𝜁) maps to a reflection as well. It is now clear that the transpositions
together with 𝜃 generate 𝜇𝑛

𝑚 ⋊ 𝑆𝑛, hence 𝐺(𝑚, 1, 𝑛) is a reflection group.

Example 2.29. The group 𝐺(5, 1, 3) is generated by the reflections

𝑠 =

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠ , 𝑡 =

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ , 𝑢 =

⎛⎝1 0 0
0 1 0
0 0 𝜁5

⎞⎠ .

The group is of order 750.

2.5.3 Normal subgroups of wreath products

Let 𝑝 be a divisor of 𝑚 (not necessarily prime despite the notation).

Let 𝜇𝑚(𝑝) be the subgroup of 𝜇𝑚 generated by 𝜁𝑝𝑚.

This is a subgroup of index 𝑝 consisting of the 𝑚
𝑝
-th roots of unity.

Consider the map

𝜓 : 𝜇𝑛
𝑚 → 𝜇𝑚 , 𝜃 = (𝜃1, . . . , 𝜃𝑛) ↦→

𝑛∏︁
𝑖=1

𝜃𝑖 .

This is a surjective group morphism. We define

𝜇𝑛
𝑚(𝑝) = 𝜓−1(𝜇𝑚(𝑝)) ⊂ 𝜇𝑛

𝑚 .

The group 𝜇𝑛
𝑚(𝑝) is normal of index 𝑝 in 𝜇𝑛

𝑚.

Hence, 𝜇𝑛
𝑚(𝑝)⋊ 𝑆𝑛 is normal of index 𝑝 in 𝜇𝑛

𝑚 ⋊ 𝑆𝑛.

We define 𝐺(𝑚, 𝑝, 𝑛) as the image of 𝜇𝑛
𝑚(𝑝)⋊ 𝑆𝑛 under 𝜇𝑛

𝑚 ⋊ 𝑆𝑛 → GL𝑛(ℂ).

This is the group of generalized permutation matrices with entries in 𝜇𝑚 such that
moreover in any matrix the product of the non-zero entries is contained in 𝜇𝑚(𝑝).

The group 𝐺(𝑚, 𝑝, 𝑛) is normal in 𝐺(𝑚, 1, 𝑛) of index 𝑝. In particular,

|𝐺(𝑚, 𝑝, 𝑛)| = 𝑚𝑛𝑛!

𝑝
.

Example 2.30. A few familiar cases:

1. 𝐺(2, 2, 𝑛) ≃ 𝜇𝑛
2 (2)⋊ 𝑆𝑛 is group of even-signed permutations, also known as the

Weyl group of type 𝐷.
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2. 𝐺(𝑚,𝑚, 2) is the dihedral group in the representation as in Example 2.19.

Lemma 2.31. If 𝑚𝑛 > 1 and 𝑝 is a divisor of 𝑚, then 𝐺(𝑚, 𝑝, 𝑛) is a unitary reflection
group.

Proof. By construction we have 𝐺(𝑚, 𝑝, 𝑛) ≃ 𝜇𝑛
𝑚(𝑝) ⋊ 𝑆𝑛. The transpositions in 𝑆𝑛

generate the 𝑆𝑛-part and they map to reflections as discussed before.

We need to find generators for the 𝜇𝑛
𝑚(𝑝)-part. Start from (1, . . . , 1). Suppose we plug

in 𝜁𝑘 at some position. Then to get this tuple into 𝜇𝑛
𝑚(𝑝) we need to plug in 𝜁−𝑘𝜁𝑝𝑙

for some 𝑙 at another position.

It follows that 𝜇𝑛
𝑚(𝑝) is generated by elements which either have 𝜁𝑝 in one position

(and = 1 elsewhere) or which contain 𝜁 and 𝜁−1 (and = 1 elsewhere).

With the help of transpositions it follows that the 𝜇𝑛
𝑚(𝑝)-part in 𝜇𝑛

𝑚(𝑝)⋊ 𝑆𝑛 is gen-
erated by (1, . . . , 1, 𝜁𝑝) and by (1, . . . , 1, 𝜁, 𝜁−1). The element (1, . . . , 1, 𝜁𝑝) maps to a
reflection. But (1, . . . , 1, 𝜁, 𝜁−1) does not. However, we can replace this generator by
((1, . . . , 1, 𝜁, 𝜁−1); (𝑛− 1, 𝑛)), which maps to the reflection⎛⎜⎜⎜⎜⎜⎝

1
. . .

1
0 𝜁
𝜁−1 0

⎞⎟⎟⎟⎟⎟⎠
of order 2 (the last (2× 2)-block has eigenvalues 1 and -1).

We have shown that 𝐺(𝑚, 𝑝, 𝑛) is generated by reflections.

Example 2.32. The group 𝐺(8, 2, 3) is generated by the reflections

𝑠 =

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠ , 𝑡 =

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ , 𝑢 =

⎛⎝1 0 0
0 1 0
0 0 𝜁28

⎞⎠ , 𝑣 =

⎛⎝1 0 0
0 0 𝜁8
0 𝜁−1

8 0

⎞⎠ .

The group is of order 1536.

Remark 2.33. Whereas 𝐺(𝑚, 1, 𝑛) and 𝐺(𝑚,𝑚, 𝑛) are generated by 𝑛 reflections, we
need 𝑛+ 1 reflections for 𝐺(𝑚, 𝑝, 𝑛) when 𝑝 ̸= 1,𝑚.

2.6 The classification

Writing a reflection group 𝐺 ⊂ GL𝑛(ℂ) in another basis amounts to conjugating 𝐺
in GL𝑛(ℂ). We do not want to distinguish between 𝐺 and its conjugates, i.e., we are
only interested in its conjugacy class in GL𝑛(ℂ).

We extend this to (abstract) reflection representations.
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Definition 2.34. We say that two reflection representations 𝜌1 : 𝐺1 → GL(𝑉1) and
𝜌2 : 𝐺2 → GL(𝑉2) are equivalent if there is a linear isomorphism 𝑓 : 𝑉1 → 𝑉2 such
that

𝑓𝜌1(𝐺1)𝑓
−1 = 𝜌2(𝐺2) .

We call the equivalence class of 𝐺 the type of 𝐺. Note that this corresponds to a
unique conjugacy class of reflection groups in GL𝑛(ℂ).

Remark 2.35. Under the conjugation operation 𝑓 ∘(−)∘𝑓−1 : GL(𝑉1) → GL(𝑉2) every
element of 𝜌1(𝐺1) is sent to a unique element of 𝜌2(𝐺2). Since 𝜌𝑖 is injective, this
yields a group isomorphism 𝜙 : 𝐺1 → 𝐺2 with

𝑓𝜌1(𝑔1)𝑓
−1 = 𝜌2(𝜙(𝑔1))

for all 𝑔1 ∈ 𝐺. This means the pullback 𝜌2 ∘ 𝜙 of 𝜌2 to 𝐺1 is isomorphic to 𝜌1 as
representations of 𝐺1.

Note that when we consider a fixed group 𝐺 and its reflection representations,
equivalence means we consider twisted isomorphisms of representations of𝐺, twisted
by an automorphism of 𝐺. This is coarser than usual isomorphisms of representations
where the twist is the identity.

Two unitary reflection groups are unitary equivalent if 𝑓 above can be chosen to be
an isometry. As in Lemma 2.2 we can turn any reflection group into a unitary one
and with the same averaging argument as in the proof a linear isomorphism 𝑉 → 𝑉 ′

becomes an isometry, so the classification of reflection groups up to equivalence is
equivalent to classifying unitary reflection groups up to unitary equivalence.

The classification task was achieved by Shephard and Todd 1954.

Figure 2: The paper Shephard and Todd 1954.
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Figure 3: Citations of Shephard and Todd 1954 per year (data from MathSciNet).

2.6.1 Irreducibility

The starting point in the classification is the notion of irreducible groups.

Definition 2.36. A subgroup 𝐺 ⊂ GL(𝑉 ) is called irreducible if the action of 𝐺 on 𝑉
is irreducible, i.e., there is no 𝐺-stable subspace in 𝑉 except for 𝑉 and 0.

Example 2.37. 𝜇mat
𝑚 is irreducible for all 𝑚 (including 𝑚 = 1).

We denote by
𝑉 𝐺 = {𝑣 ∈ 𝑉 | 𝑔𝑣 = 𝑣 for all 𝑔 ∈ 𝐺}

the fix space of 𝐺.

Proposition 2.38. Let 𝐺 ⊂ 𝑈(𝑉 ) be a unitary reflection group. Then there is an orthog-
onal decomposition

𝑉 = 𝑉 𝐺 ⊥ 𝑉1 ⊥ . . . ⊥ 𝑉𝑟

of 𝑉 and a direct product decomposition

𝐺 = 𝐺1 × · · · ×𝐺𝑟

of 𝐺 such that for each 𝑖 the factor 𝐺𝑖 acts as an irreducible (unitary) reflection group on
𝑉𝑖 and acts as the identity on 𝑉𝑗 for all 𝑗 ̸= 𝑖.

The space 𝑉1 ⊥ . . . ⊥ 𝑉𝑟 is called the support of 𝐺 and its dimension is called the
rank of 𝐺.

The classification of complex reflection groups thus reduces to the classification of
the irreducible ones.

For the proof of Proposition 2.38 we will need two preliminary facts.
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Lemma 2.39. Let 𝑟 and 𝑠 be two unitary reflections with roots 𝛼 and 𝛽, respectively. Then
𝑟 and 𝑠 commute if and only if ℂ𝛼 = ℂ𝛽 or (𝛼, 𝛽) = 0.

Proof. We can write 𝑟 = 𝑟𝛼,𝜁 and 𝑠 = 𝑟𝛽,𝜂 . Then

(𝑟𝑠)(𝑣) = 𝑣 − (1− 𝜁)
(𝑣, 𝛼)

(𝛼, 𝛼)
𝛼− (1− 𝜂)

(𝑣, 𝛽)

(𝛽, 𝛽)
𝛽 + (1− 𝜁)(1− 𝜂)

(𝛽, 𝛼)(𝑣, 𝛽)

(𝛼, 𝛼)(𝛽, 𝛽)
𝛼

and similarly

(𝑠𝑟)(𝑣) = 𝑣 − (1− 𝜂)
(𝑣, 𝛽)

(𝛽, 𝛽)
𝛽 − (1− 𝜁)

(𝑣, 𝛼)

(𝛼, 𝛼)
𝛼 + (1− 𝜁)(1− 𝜂)

(𝛼, 𝛽)(𝑣, 𝛼)

(𝛽, 𝛽)(𝛼, 𝛼)
𝛽

The two expressions are equal if and only if

(𝛽, 𝛼)(𝑣, 𝛽)𝛼 = (𝛼, 𝛽)(𝑣, 𝛼)𝛽

for all 𝑣 ∈ 𝑉 . This holds if and only if 𝛼 and 𝛽 are linearly dependent or (𝛼, 𝛽) = 0.

Lemma 2.40. Let 𝑟 be a unitary reflection with root 𝛼. A subspace𝑊 ⊆ 𝑉 is 𝑟-invariant
if and only if 𝛼 ∈ 𝑊 or 𝛼 ∈ 𝑊⊥.

Proof. If 𝛼 ∈ 𝑊⊥ then𝑊 ⊆ 𝛼⊥ = Ker(1− 𝑟). Hence, 𝑟 acts as identity on𝑊 , so𝑊
is 𝑟-invariant.

If 𝛼 ∈ 𝑊 , then Im(1− 𝑟) = ℂ𝛼 ⊆ 𝑊 . We can write 𝑟 = 𝑟𝛼,𝜁 . Then

𝑟𝛼,𝜁(𝑣) = 𝑣 − (1− 𝜁)
(𝑣, 𝛼)

(𝛼, 𝛼)
𝛼

Hence, if 𝑤 ∈ 𝑊 , then 𝑟𝛼,𝜁(𝑤) ∈ 𝑤 + ℂ𝛼 ⊆ 𝑊 , so𝑊 is 𝑟-stable.

Conversely, assume that𝑊 is 𝑟-invariant. We can then consider 𝑟|𝑊 : 𝑊 → 𝑊 and
we have𝑊 = Ker(1− 𝑟|𝑊 )⊕ Im(1− 𝑟|𝑊 ). If 𝛼 /∈ 𝑊⊥, then𝑊 ̸⊆ Ker(1− 𝑟) = 𝛼⊥,
so𝑊 ̸⊆ Ker(1− 𝑟|𝑊 ). Hence, 0 ̸= Im(1− 𝑟|𝑊 ) ⊆ Im(1− 𝑟) = ℂ𝛼, so 𝛼 ∈ 𝑊 .

Proof of Proposition 2.38. Let 𝑊 ⊂ 𝑉 be a 𝐺-stable subspace. Then 𝑈 = 𝑊⊥ is 𝐺-
stable as well: if 𝑢 ∈ 𝑈 and 𝑤 ∈ 𝑊 , then 𝑔−1 ∈ 𝑊 since 𝑊 is 𝐺-stable, hence
(𝑔𝑢, 𝑤) = (𝑔𝑢, 𝑔(𝑔−1𝑤)) = (𝑢, 𝑔−1𝑤) = 0. Hence, 𝑉 = 𝑊 ⊥ 𝑈 is a 𝐺-stable de-
composition. By induction, starting from 𝑉 𝐺, we get an orthogonal decomposition
𝑉 = 𝑉 𝐺 ⊥ 𝑉1 ⊥ . . . ⊥ 𝑉𝑟 into irreducible 𝐺-stable subspaces 𝑉𝑖.

If 𝛼 is a root of some reflection in 𝐺, then 𝛼 ∈ 𝑉𝑖 for some 𝑖 by Lemma 2.40. Let 𝐺𝑖

be the subgroup of 𝐺 generated by the reflections with roots in 𝑉𝑖. Then 𝐺𝑖 acts as
the identity on 𝑉𝑗 for 𝑗 ̸= 𝑖 and 𝐺 is is generated by the 𝐺𝑖. Since 𝑉𝑖 ⊥ 𝑉𝑗 for 𝑗 ̸= 𝑖, it
follows from Lemma 2.39 that 𝐺𝑖 and 𝐺𝑗 commute. Hence, 𝐺 = 𝐺1 × . . .×𝐺𝑟.

Lemma 2.41. Let 𝑛 > 1. Then for 𝑆perm
𝑛 = 𝐺(1, 1, 𝑛) the decomposition from Proposi-

tion 2.38 is given by 𝐿 ⊥ 𝐿⊥, where 𝐿 is the line in ℂ𝑛 spanned by 𝑒1 + . . .+ 𝑒𝑛.
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Proof. Let𝑊 ⊆ ℂ𝑛 be a non-trivial invariant subspace. We claim that either𝑊 = 𝐿 or
𝑊 = 𝐿⊥. Then the action on 𝐿⊥ is irreducible, proving the claim. The claim is clear for
𝑛 = 2, so assume 𝑛 > 2. A root for the reflection corresponding to the transposition
(𝑖, 𝑗) is 𝑒𝑖 − 𝑒𝑗 . It follows from Lemma 2.40 that 𝑒𝑖 − 𝑒𝑗 ∈ 𝑊 or 𝑒𝑖 − 𝑒𝑗 ∈ 𝑊⊥. Now,
if for distinct 𝑖, 𝑗, 𝑘 we would have 𝑒𝑖 − 𝑒𝑗 ∈ 𝑊 and 𝑒𝑗 − 𝑒𝑘 ∈ 𝑊⊥, then 𝑒𝑗 − 𝑒𝑘 = 0,
which is a contradiction. So, either 𝑒𝑖 − 𝑒𝑗 ∈ 𝑊 or 𝑒𝑖 − 𝑒𝑗 ∈ 𝑊⊥ for all 𝑖 ̸= 𝑗. In the
first case we have 𝐿⊥ ⊆ 𝑊 and in the second𝑊 ⊆ 𝐿. Since dim(𝐿) = 1, this forces
𝐿⊥ = 𝑊 or𝑊 = 𝐿.

In particular 𝑆perm
𝑛 is not irreducible for 𝑛 > 1. A basis for 𝐿⊥ is given by the ele-

ments
𝑏𝑘 = 𝑒𝑘 − 𝑒𝑘+1

for 1 ≤ 𝑘 < 𝑛. The action of the transposition 𝑠𝑖 = (𝑖, 𝑖+ 1) on 𝑏𝑘 is given by

𝑠𝑖(𝑏𝑘) = 𝑏𝑘 for 𝑘 < 𝑖− 1 or 𝑘 > 𝑖+ 1 (2.6)
𝑠𝑖(𝑏𝑖−1) = 𝑒𝑖 − 𝑒𝑖+1 = 𝑒𝑖−1 − 𝑒𝑖 + 𝑒𝑖 − 𝑒𝑖+1 = 𝑏𝑖−1 + 𝑏𝑖 (2.7)
𝑠𝑖(𝑏𝑖) = 𝑒𝑖+1 − 𝑒𝑖 = −𝑏𝑖 (2.8)

𝑠𝑖(𝑏𝑖+1) = 𝑒𝑖 − 𝑒𝑖+2 = 𝑒𝑖 − 𝑒𝑖+1 + 𝑒𝑖+1 − 𝑒𝑖+2 = 𝑏𝑖 + 𝑏𝑖+1 . (2.9)

We denote by 𝑆ref
𝑛 ⊂ GL𝑛−1(ℂ) the corresponding group. By the discussion above, it

is an irreducible reflection representation of 𝑆𝑛 of rank 𝑛− 1.

Example 2.42. The group 𝑆ref
3 is generated by

𝑠1 =

(︂
−1 1
0 1

)︂
and 𝑠2 =

(︂
1 0
1 −1

)︂
.

We have seen this reflection group several times before.

Remark 2.43. The irreducible reflection representation of 𝑆𝑛 just described is isomor-
phic to the Specht module for the partition (𝑛− 1, 1).

Proposition 2.44. For 𝑚 > 1 the reflection group 𝐺(𝑚, 𝑝, 𝑛) is irreducible unless
(𝑚, 𝑝, 𝑛) = (2, 2, 2). The group 𝐺(2, 2, 2) is equivalent to 𝜇mat

2 × 𝜇mat
2 .

Proof. The claim is clear for 𝑛 = 1, so we assume 𝑛 > 1. Since 𝑆perm
𝑛 ⊂ 𝐺(𝑚, 𝑝, 𝑛),

the only candidates for invariant subspaces are 𝐿 and 𝐿⊥ by Lemma 2.41. It follows
from the proof of Proposition 2.38 that 𝐿 is stable if and only if 𝐿⊥ is stable. Recall
that 𝐺(𝑚, 𝑝, 𝑛) is generated by the permutation matrices together with

𝑠 =

⎛⎜⎜⎜⎝
1
. . .

1
𝜁𝑝

⎞⎟⎟⎟⎠ and 𝑡 =

⎛⎜⎜⎜⎜⎜⎝
1
. . .

1
0 𝜁
𝜁−1 0

⎞⎟⎟⎟⎟⎟⎠ ,

where 𝜁 is a primitive 𝑚-th root of unity.
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The element 𝑒1 + . . . + 𝑒𝑛 of 𝐿 is mapped under 𝑠 to 𝑒1 + . . . + 𝜁𝑝𝑒𝑛. So, 𝐿 can be
stable only if 𝜁𝑝 = 1, i.e., 𝑚 = 𝑝. Under 𝑡 it is mapped to 𝑒1 + . . .+ 𝜁𝑒𝑛−1 + 𝜁−1𝑒𝑛. So,
𝐿 can be stable only if 𝑛 = 2 and 𝜁 = 𝜁−1, so 𝑚 = 2. This only leaves the possibility
(𝑚, 𝑝, 𝑛) = (2, 2, 2) and in this case the space 𝐿 is indeed invariant. The decomposition
for𝐺(2, 2, 2) is𝐿 ⊥ 𝐿⊥ and the respective restrictions are each equivalent to 𝜇mat

2 .

2.6.2 Imprimivity

Definition 2.45. A subgroup 𝐺 ⊂ GL(𝑉 ) is said to be imprimitive if there is a decom-
position 𝑉 = 𝑉1 ⊕ . . .⊕ 𝑉𝑟 into 𝑟 > 1 non-trivial subspaces 𝑉𝑖 such that the action of
𝐺 permutes the 𝑉𝑖. The set {𝑉1, . . . , 𝑉𝑛} is called a system of imprimitivity.

If no such decomposition exists, then 𝐺 is said to be primitive.

The classification of irreducible reflection groups can thus be split into the classifica-
tion of the imprimitive and of the primitive ones.

Example 2.46. The group 𝜇mat
𝑚 is primitive.

Example 2.47. For 𝑛 > 1 the group 𝐺(𝑚, 𝑝, 𝑛) is imprimitive with system of imprimi-
tivity {ℂ𝑒𝑖 | 1 ≤ 𝑖 ≤ 𝑛} since the action of (𝜃;𝜎) ∈ 𝜇𝑚 ≀ 𝑆𝑛 maps ℂ𝑖 to ℂ𝑒𝜎(𝑖).

The following two facts are not too difficult to prove but we will skip the proof
here.

Proposition 2.48. The group 𝑆ref
𝑛 is primitive for 𝑛 ≥ 4.

Theorem 2.49. If 𝐺 ⊂ GL(𝑉 ) is an irreducible and imprimitive reflection group then 𝐺
is equivalent to 𝐺(𝑚, 𝑝, 𝑛) for some 𝑛 > 1.

2.6.3 The primitive groups

The remaining problem—and the main difficulty of the classification—is to determine
which other irreducible primitive reflection groups away from 𝜇mat

𝑚 and 𝑆ref
𝑛 there

are.

Shephard and Todd 1954 proceed as follows.

Let 𝑉 be a vector space. The projective space ℙ(𝑉 ) of 𝑉 is the set of equivalence
classes of all non-zero elements 𝑣 ∈ 𝑉 under the relation 𝑣 ∼ 𝑤 if 𝑣 = 𝜆𝑤 for some
0 ̸= 𝜆 ∈ ℂ.

A subspace of ℙ(𝑉 ) is the image in ℙ(𝑉 ) of a subspace of 𝑉 .

A collineation on ℙ(𝑉 ) is a bijective map ℙ(𝑉 ) → ℙ(𝑉 ) which preserves inclusions
between subspaces in ℙ(𝑉 ).

Every linear automorphism on 𝑉 defines a collineation on ℙ(𝑉 ). Such collineations
are called homographies.3

3Over the complex numbers there are more collineations than homographies: for example, complex
conjugation is a collineation.
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A homology is a homography defined by a linear automorphism having an eigenspace
of dimension dim(𝑉 )− 1 and one other eigenvalue.

A reflection group 𝐺 ⊂ GL(𝑉 ) thus defines a finite group ℙ(𝐺) of collineations on
ℙ(𝑉 ) generated by homologies. The group ℙ(𝐺) is isomorphic to the quotient of 𝐺
by the subgroup of its scalar matrices.

Collineation groups have been studied extensively before and the primitive ones
containing homologies were classified by Blichfeldt 1905 (in dimension 3) and by
Mitchell 1914 (in dimension > 3).

In particular, away from ℙ(𝑆ref
𝑛 ) (note that the group ℙ(𝜇mat

𝑚 ) is trivial) there are only
finitely many and none for 𝑛 > 8.

Shephard and Todd 1954 argue that a collineation group generated by homologies
can only come from a finite number of complex reflection groups (up to equivalence)
and construct these groups accordingly.

Theorem 2.50 (Shephard and Todd 1954). Let 𝐺 ⊂ GL(𝑉 ) be an irreducible complex
reflection group. Let 𝑛 = dim(𝑉 ). Then 𝐺 is equivalent to one of the following:

1. the primitive group 𝑆ref
𝑛 for 𝑛 ≥ 4;

2. the imprimitive group 𝐺(𝑚, 𝑝, 𝑛) for 𝑚,𝑛 > 1 and (𝑚, 𝑝, 𝑛) ̸= (2, 2, 2);

3. the primitive group 𝜇mat
𝑚 for 𝑚 ≥ 1 (𝑛 = 1);

4. a primitive group denoted 𝐺4, . . . , 𝐺37 by Shephard and Todd (2 ≤ 𝑛 ≤ 8).

The proof by Shephard and Todd 1954 is only 5 pages long but draws on the consid-
erable literature on collineation groups generated by homologies.

The groups 𝐺4, . . . , 𝐺37 are called the exceptional complex reflection groups. They
contain several familiar real reflection groups:

𝐺23 = 𝐻3 , 𝐺28 = 𝐹4 , 𝐺30 = 𝐻4 , 𝐺35 = 𝐸6 , 𝐺36 = 𝐸7 , 𝐺37 = 𝐸8 .

The orders of the exceptional groups range from 24 for 𝐺4 to 696,729,600 for 𝐺37.
But note that they are not enumerated by increasing order. We have seen 𝐺4 in
Example 2.22 and 𝐺12 in Remark 2.24.

Remark 2.51. The only overlap in the list in Theorem 2.50 are the following equiva-
lences:

1. 𝐺(4, 4, 2) and 𝐺(2, 1, 2)

2. 𝐺(3, 3, 2) and 𝑆ref
3

3. 𝐺(2, 2, 3) and 𝑆ref
4

Remark 2.52. I find it remarkable that there are so few exceptional groups and that
they are all still somewhat manageable with a computer.

Remark 2.53. After the classification, a typical strategy to prove a statement about
complex reflection groups is to prove it for the infinite series and then case-by-case
for the exceptional groups.
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Even though this approach is very powerful, there are two problems:

1. Usually, this does not provide a conceptual understanding of why something
is true. (Nonetheless, already knowing that a statement is true may help and
motivate to search for a conceptual proof.)

2. One tends to just work with the infinite series (which have a nice combinatorial
nature) and stops caring about the few exceptional groups. But then it is not
clear whether one ultimately proves a truth about reflection group—the truth is
often in the exceptional groups.

Remark 2.54. There is a more systematic approach to the classification by Cohen
1976 based on a generalization of the notion of root systems that was used for the
classification of real reflection groups. This is also the approach taken by Lehrer and
Taylor 2009. Still, all this is far from easy.

Using the classification and computer calculations one can show the following sur-
prising fact which I am not sure has been documented anywhere (but seems to be
known!?).

Theorem 2.55 (Thiel 2014). Two finite irreducible complex reflection groups groups are
equivalent if and only if their underlying groups are isomorphic.

Corollary 2.56. If 𝜌1 : 𝐺 → GL(𝑉 ) and 𝜌2 : 𝐺 → GL(𝑉 ′) are irreducible reflection
representations of a finite group 𝐺, then 𝜌1 and 𝜌2 are equivalent, i.e., 𝜌1 is isomorphic to
𝜌2 ∘ 𝜙 for some automorphism 𝜙 on 𝐺.

Remark 2.57. The statement of the theorem does not hold for reducible groups: the
reflection groups 𝐺(6, 6, 2) and 𝑆ref

3 × 𝜇mat
2 are not equivalent but their underlying

groups are isomorphic.

3 Symplectic reflection groups

3.1 The quaternions and quaternionic reflection groups

A skew-field (also called division ring) is basically the same thing as a field but multi-
plication may be non-commutative.

Most of linear algebra over a field (dimension, matrices, Gaussian elimination, etc.)
works also verbatim over a skew-feld.

It is a classical theorem by Frobenius 1878 that the only finite-dimensional skew-fields
over ℝ are ℝ, ℂ, and the quaternions ℍ discovered by Hamilton in 1843.

The quaternions form a 4-dimensional vector space over ℝ with basis {1, 𝑖, 𝑗, 𝑘},
i.e.,

ℍ = {𝑎+ 𝑏𝑖+ 𝑐𝑗 + 𝑑𝑘 | 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ} .
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The multiplication on the elements {1, 𝑖, 𝑗, 𝑘} is defined by

𝑖 · 1 = 1 · 𝑖 = 𝑖, 𝑗 · 1 = 1 · 𝑗 = 𝑗 , 𝑘 · 1 = 1 · 𝑘 = 𝑘 ,

𝑖2 = 𝑗2 = 𝑘2 = −1 ,

𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗

𝑗𝑖 = −𝑘 , 𝑘𝑗 = −𝑖 , 𝑖𝑘 = −𝑗 .

The multiplication is extended linearly to all of ℍ.

The elements of ℝ commute with all elements of ℍ. In fact, ℝ is the center of ℍ.

Since 𝑖𝑗 = 𝑘, we can write

𝑎+ 𝑏𝑖+ 𝑐𝑗 + 𝑑𝑘 = (𝑎+ 𝑏𝑖) + (𝑐+ 𝑑𝑖)𝑗 , (3.1)

and this shows that ℍ is a 2-dimensional vector space over ℂ with basis {1, 𝑗}.

Note that for a complex number 𝑧 = 𝑎+ 𝑏𝑖 we have

𝑧𝑗 = (𝑎+ 𝑏𝑖)𝑗 = 𝑎𝑗 + 𝑏𝑖𝑗 = 𝑎𝑗 − 𝑏𝑗𝑖 = 𝑗𝑎− 𝑗𝑏𝑖 = (𝑎− 𝑏𝑖)𝑗 = 𝑧𝑗 .

By a vector space 𝑉 over ℍ we always mean a right ℍ-module and its dimension is al-
ways the dimension overℍ. The groupGL(𝑉 ) is the group ofℍ-linear automorphisms
of 𝑉 .

Complex conjugation extends to ℍ by the rule 𝑗 = −𝑗, i.e.,

𝑎+ 𝑏𝑖+ 𝑐𝑗 + 𝑑𝑘 = (𝑎+ 𝑏𝑖)+(𝑐+ 𝑑𝑖)𝑗 = (𝑎−𝑏𝑖)−(𝑐−𝑑𝑖)𝑗 = 𝑎−𝑏𝑖−𝑐𝑗−𝑑𝑘 . (3.2)

An inner product (·, ·) on 𝑉 is defined as in Section 2.1 and this leads to the subgroup
U(𝑉 ) of GL(𝑉 ) of unitary transformations.

As before, an inner product on ℍ𝑛 is described by its Gram–Matrix 𝐽 in the standard
basis and the linear map ℍ𝑛 → ℍ𝑛 defined by a matrix𝑀 is unitary with respect 𝐽 if
and only if 𝐽 =𝑀𝑇𝐽𝑀 .

For 𝐽 = 𝐼 the identity we obtain the standard inner product on ℍ𝑛 given by

⟨𝑣, 𝑤⟩ =
𝑛∑︁

𝑙=1

𝜆𝑙𝜇𝑙

where 𝜆𝑙, 𝜇𝑙 ∈ ℍ are the coordinates of 𝑣, 𝑤 in the standard basis. The correspond-
ing unitary group is denoted by U𝑛(ℍ) and consists of matrices 𝑀 such that 𝐼 =
𝑀𝑇𝑀 .

With Gram–Schmidt orthonormalization one can show as before that up to change of
basis there is just one inner product on ℍ𝑛, namely the standard one.

For any finite subgroup 𝐺 ⊂ GL(𝑉 ) one can show with the same arguments as in
Lemma 2.2 that there is a 𝐺-invariant inner product on 𝑉 .
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A (unitary) quaternionic reflection is defined exactly as before in Definition 2.4. Similarly
as in Equation 3.3 we deduce the formula

𝑟𝛼,𝜁(𝑣) = 𝑣 − (1− 𝜁)
(𝑣, 𝛼)

(𝛼, 𝛼)
𝛼 . (3.3)

for a unitary quaternionic reflection. As before, 𝜁 is a root of unity. But this time 𝜁
lives in ℍ and this is a first complication since there are many more roots of unity in
ℍ, namely 𝑥𝜁𝑥−1 for any root of unity 𝜁 ∈ ℂ and 𝑥 ∈ ℍ (recall that the center of ℍ is
ℝ, so there will be elements of ℍ not commuting with 𝜁), e.g.,

−1 + 𝑖+ 𝑗 + 𝑘

2

is a third root of unity.

A quaternionic reflection group, respectively unitary quaternionic reflection group, is
a finite subgroup of GL(𝑉 ), respectively of U(𝑉 ), generated by quaternionic reflec-
tions.

The notions of irreducible, imprimitive, and (unitary) equivalent for (unitary) quater-
nionic reflection groups are defined as before. Proposition 2.38 about the orthogonal
decomposition into irreducible components holds analogously.

The classification of irreducible quaternionic reflection groups up to equivalence was
achieved by Cohen 1980.

3.2 Complexification and symplectic reflection groups

3.2.1 Symplectic spaces

For the moment let 𝑉 be a complex vector space again.

A symplectic form on 𝑉 is a bilinear form 𝜔 : 𝑉 × 𝑉 → ℂ which is:

1. alternating, i.e., 𝜔(𝑣, 𝑣) = 0 for all 𝑣 ∈ 𝑉 ;

2. non-degenerate, i.e., 𝜔(𝑣, 𝑤) = 0 for all 𝑤 ∈ 𝑉 implies 𝑣 = 0.

Note that the alternating condition implies

0 = 𝜔(𝑣 + 𝑤, 𝑣 + 𝑤) = 𝜔(𝑣, 𝑣) + 𝜔(𝑣, 𝑤) + 𝜔(𝑤, 𝑣) + 𝜔(𝑤,𝑤) = 𝜔(𝑣, 𝑤) + 𝜔(𝑤, 𝑣) ,

so
𝜔(𝑤, 𝑣) = −𝜔(𝑣, 𝑤) ,

so 𝜔 is skew-symmetric (this is equivalent to alternating over a field of characteristic
̸= 2).

We say that 𝑔 ∈ GL(𝑉 ) leaves 𝜔 invariant, or that 𝑔 is a symplectic transformation,
if

𝜔(𝑔𝑣, 𝑔𝑤) = 𝜔(𝑣, 𝑤)

for all 𝑣, 𝑤 ∈ 𝑉 . We denote by Sp(𝑉 ) the subgroup of GL(𝑉 ) of symplectic transfor-
mations.
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Example 3.1. Let 𝜔 be a symplectic form on ℂ𝑛 and let 𝐽 be its Gram matrix in the
standard basis, i.e., 𝐽𝑖𝑗 = 𝜔(𝑒𝑖, 𝑒𝑗). Then

𝜔(𝑣, 𝑤) = 𝑣𝑇𝐽𝑤 .

The matrix 𝐽 is skew-symmetric (𝐽𝑇 = −𝐽 ) and invertible. Conversely, any such
matrix defines a symplectic form. But note that

det(𝐽) = det(𝐽𝑇 ) = det(−𝐽) = (−1)𝑛 det(𝐽) ,

and this can only be true if 𝑛 is even. Hence, a symplectic form can only exist on an
even-dimensional space.

So, now suppose we are onℂ2𝑛. We label the standard basis as {𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛}.
The block matrix

Ω =

(︂
0 𝐼𝑛

−𝐼𝑛 0

)︂
is skew-symmetric and invertible, giving rise to the standard symplectic form 𝜔 on ℂ2𝑛

which is characterized by the properties

𝜔(𝑥𝑖, 𝑗𝑗) = 𝛿𝑖𝑗 and 𝜔(𝑥𝑖, 𝑥𝑗) = 0 .

The linear map ℂ2𝑛 → ℂ2𝑛 defined by a matrix𝑀 ∈ GL2𝑛(ℂ) in the standard basis is
a symplectic transformation with respect to a symplectic form 𝜔 with Gram matrix 𝐽
if and only if

Ω =𝑀𝑇Ω𝑀 . (3.4)

In case 𝐽 = Ω such a matrix is called a symplectic matrix and we denote by Sp2𝑛(ℂ)
the subgroup of GL2𝑛(ℂ) of symplectic matrices, called the symplectic group.

We thus have a complete classification of symplectic forms and their symplectic
transformations on ℂ2𝑛, and thus on any abstract vector space 𝑉 after choosing a
basis.

Even better, a version of the Gram–Schmidt process transforms any symplectic form
into the standard one. Hence, up to change of basis there is just one symplectic
form, namely the standard one, and there is just one symplectic group, namely
Sp2𝑛(ℂ).

Example 3.2. The standard symplectic form also has the following interpretation. Let
h be a complex vector space and let h* be its dual. Then there is a natural symplectic
form 𝜔 on h⊕ h* given by

𝜔((𝑣, 𝑓), (𝑤, 𝑔)) = 𝑔(𝑣)− 𝑓(𝑤) .

When choosing a basis {𝑥𝑖} of h with dual basis {𝑦𝑗}, this symplectic form is precisely
the standard one.

If 𝑔 ∈ GL(h), then 𝑔 induces an automorphism on h*. If𝑀 is the matrix of 𝑔 acting
on h in the basis {𝑥𝑖}, then (𝑀−1)𝑇 is the matrix of 𝑔 acting on h* in the dual basis
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{𝑦𝑖}. Hence, 𝑔 induces an automorphism 𝑔⊛ of h⊕ h*. It is clear that this leaves the
symplectic form 𝜔 invariant, i.e., 𝑔⊛ ∈ Sp(h⊕ h*).

In particular, a finite subgroup 𝐺 ⊂ GL(h) defines a finite subgroup 𝐺⊛ ⊂ Sp(h⊕ h*).

There is more in this example. When considering h as a complex algebraic variety, its
cotangent space in every point 𝑣 ∈ h is precisely h*, hence the cotangent bundle 𝑇 *h
of h is our symplectic space h⊕ h*. This is the local version of the fact that smooth
complex varieties (manifolds) admit a natural symplectic form on their cotangent
bundle—a fact that plays a key role in physics.

Definition 3.3. Let (𝑉, 𝜔) be a symplectic space. A symplectic subspace is a subspace
𝑊 of 𝑉 such that 𝜔 restricts to a symplectic form on𝑊 .

Remark 3.4. In ℂ𝑛 with standard symplectic a subspace𝑊 is symplectic if and only if
it is invariant under multiplication with Ω.

3.2.2 Complexification

We now turn back to quaternions.

A matrix 𝑀 ∈ Mat𝑛(ℍ) can uniquely be written as 𝑀1 + 𝑀2𝑗 with 𝑀1,𝑀2 ∈
Mat𝑛(ℂ).

Recall that we consider ℍ𝑛 as a right ℂ-module. We do this to express the left action
of matrices appropriately.

A vector 𝑣 ∈ ℍ𝑛 can be uniquely written as 𝑣1 + 𝑗𝑣2 with 𝑣1, 𝑣2 ∈ ℂ𝑛. We set

𝑣∨ =

(︂
𝑣1
𝑣2

)︂
.

We call this the complexification of quaternionic vectors.

Recall that 𝑗𝑧 = 𝑧𝑗 for 𝑧 ∈ ℂ.

We now obtain:

𝑀𝑣 = (𝑀1 +𝑀2𝑗)(𝑣1 + 𝑗𝑣2) =𝑀1𝑣1 +𝑀1𝑗𝑣2 +𝑀2𝑗𝑣1 +𝑀2𝑗
2𝑣2

=𝑀1𝑣1 + 𝑗𝑀1𝑣2 + 𝑗𝑀2𝑣1 −𝑀2𝑣2

= (𝑀1𝑣1 −𝑀2𝑣2) + (𝑀1𝑣2 +𝑀2𝑣1) .

Hence, defining

(−)∨ : Mat𝑛(ℍ) → Mat2𝑛(ℂ) , 𝑀1 +𝑀2𝑗 ↦→
(︂
𝑀1 −𝑀2

𝑀2 𝑀1

)︂
, (3.5)

we can write
(𝑀𝑣)∨ =𝑀∨𝑣∨ .
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The map (−)∨ is called the complexification of quaternionic matrices. It is an an
injective ℂ-conjugate linear algebra morphism which is compatible with the left
action of matrices on vectors. It induces an injective group morphisms

GL𝑛(ℍ) →˓ GL2𝑛(ℂ) and U𝑛(ℍ) →˓ U2𝑛(ℂ) .

Now, recall the Gram matrix Ω of the standard symplectic form on ℂ2𝑛. For 𝑀 ∈
Mat𝑛(ℍ) we compute that

Ω𝑀∨ =

(︂
0 𝐼
−𝐼 0

)︂(︂
𝑀1 −𝑀2

𝑀2 𝑀1

)︂
=

(︂
𝑀2 𝑀1

−𝑀1 𝑀2

)︂
=

(︂
𝑀1 −𝑀2

𝑀2 𝑀1

)︂(︂
0 𝐼
−𝐼 0

)︂
=𝑀

∨
Ω .

In particular, if𝑀 ∈ U𝑛(ℍ), so that𝑀
−1

=𝑀𝑇 , then

(𝑀∨)𝑇Ω𝑀∨ = Ω , (3.6)

i.e.,𝑀∨ is a symplectic matrix.

Hence, denoting by
USp2𝑛(ℂ) = U2𝑛(ℂ) ∩ Sp2𝑛(ℂ)

the unitary symplectic group, we conclude that

U𝑛(ℍ)∨ = USp2𝑛(ℂ) .

If 𝑊 is a subspace of 𝑉 , then 𝑊∨ is a subspace of 𝑉 ∨. Since 𝑊 is stable under
multiplicationwith 𝑗 and (𝑗𝐼)∨ = −Ω, it follows that𝑊∨ is stable undermultiplication
with Ω, so𝑊∨ is a symplectic subspace of 𝑉 ∨. Conversely, any symplectic subspace of
𝑉 ∨ is the complexification of a subspace of 𝑉 .

The notions of irreducible, imprimitive, equivalent, and orthogonal decomposition for a
subgroup of U𝑛(ℍ) translate under complexification to respective properties on the
complex symplectic side. We extend them to general finite subgroups of automor-
phisms of a complex symplectic space and then usually use the prefix “symplectically”.
We use the prefix “complex” when forgetting about the symplectic structure.

3.2.3 Symplectic reflection groups

Let 𝑔 ∈ U𝑛(ℍ) be a unitary quaternionic reflection.

The discussion above shows that 𝑔∨ is a unitary symplectic automorphism onℂ2𝑛.

The fixed space of 𝑔 in ℍ𝑛 is of codimension 1 over ℍ, hence the fixed space of 𝑠∨ in
ℂ2𝑛 is of codimension 2 over ℂ.

This brings us to the following definition:

Definition 3.5. Let 𝑉 be a complex vector space equipped with a symplectic form 𝜔.
A symplectic reflection is a symplectic automorphism 𝑔 ∈ Sp(𝑉 ) whose fixed space in
𝑉 is of codimension 2.

A symplectic reflection group is a finite subgroup 𝐺 ⊂ Sp(𝑉 ) generated by symplectic
reflections.
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If 𝐺 ⊂ U𝑛(ℍ) is a unitary quaternionic reflection group, then 𝐺∨ ⊂ USp2𝑛(ℂ) is a
unitary symplectic reflection group.

Conversely, any unitary symplectic reflection group in USp2𝑛(ℂ) is the complexifica-
tion of a quaternionic reflection group in U𝑛(ℍ).

Example 3.6. If 𝐺 ⊂ GL(h) is a complex reflection group then 𝐺⊛ ∈ Sp(h⊕ h*) is a
symplectic reflection group. The symplectic reflections in 𝐺⊛ are of the form 𝑠⊛ for
𝑠 ∈ GL(h) a reflection.

There is one subtlety: given a symplectic reflection group 𝐺 ⊂ Sp(𝑉 ) we can choose
a basis such that 𝐺 becomes a subgroup of Sp2𝑛(ℂ) and we can choose a basis such
that 𝐺 becomes a subgroup of U2𝑛(ℂ). But to connect this to the unitary quaternionic
side, we need to have both simultaneously. This is indeed possible thanks to the
following proposition.

Proposition 3.7 (Cohen 1980). Let 𝐺 be a finite irreducible subgroup of U2𝑛(ℂ). Then
the following are equivalent:

1. There is a 𝐺-invariant symplectic form on ℂ2𝑛.

2. 𝐺 is conjugate to a subgroup of USp2𝑛(ℂ).

Hence, quaternionic reflection groups and symplectic reflection groups are the same
thing and their classifications are equivalent.

It is more convenient to work with symplectic groups over the complex numbers
because then we can do invariant theory etc. as usual whereas this is not established
over a non-commutative base ring.

3.3 The classification

The classification of symplectic reflection groups splits into the branches as depicted
in Figure 4. A detailed description of the groups is given in Cohen 1980 (see also
Schmitt 2023 for a summary).

3.4 An Application

Let 𝑉 be a finite-dimensional complex vector space and let 𝐺 ⊂ GL(𝑉 ) be a finite
group.

We can consider the vector space 𝑉 as a complex algebraic variety. The coordinate
ring of 𝑉 , i.e., the ring of polynomial functions on 𝑉 , is

ℂ[𝑉 ] = Sym(𝑉 *) ,

where Sym(𝑉 *) is the symmetric algebra of the dual space 𝑉 *, i.e., the quotient of the
tensor algebra of 𝑉 * by the commutator relations. When choosing a basis 𝑦1, . . . , 𝑦𝑛
of 𝑉 and denoting by 𝑥1, . . . , 𝑥𝑛 its dual basis of 𝑉 *, then

ℂ[𝑉 ] ≃ ℂ[𝑥1, . . . , 𝑥𝑛]
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Figure 4: The classification of symplectic reflection groups. Source: Schmitt 2023.
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as ℂ-algebras.

The group 𝐺 acts on 𝑉 and this induces an action on 𝑉 * via

(𝑔𝑓)(𝑣) = 𝑓(𝑔−1𝑣)

for 𝑔 ∈ 𝐺, 𝑓 ∈ 𝑉 *, and 𝑣 ∈ 𝑉 .

If𝑀𝑔 is the matrix of the action of 𝑔 on 𝑉 in the basis 𝑦1, . . . , 𝑦𝑛 of 𝑉 , then (𝑀𝑇
𝑔 )

−1

is the matrix of the action of 𝑔 on 𝑉 * in the dual basis 𝑥1, . . . , 𝑥𝑛.

Extending the action of 𝐺 on 𝑉 * multiplicatively we obtain an action of 𝐺 on ℂ[𝑉 ],
i.e.,

𝑔(𝑓1 . . . 𝑓𝑟) = (𝑔𝑓1) · · · (𝑔𝑓𝑟)
for 𝑓𝑖 ∈ 𝑉 *. This action is by (graded) ℂ-algebra automorphisms.

The invariant ring of 𝐺 is

ℂ[𝑉 ]𝐺 = {𝑓 ∈ ℂ[𝑉 ] | 𝑔𝑓 = 𝑓 for all 𝑔 ∈ 𝐺} .

It is clear that this is indeed a subring of ℂ[𝑉 ].

The following are elementary facts from commutative algebra by Hilbert and Noether.

Proposition 3.8. The ring extension ℂ[𝑉 ]𝐺 ⊆ ℂ[𝑉 ] is integral and ℂ[𝑉 ]𝐺 is a finitely
generated ℂ-algebra.

Since ℂ[𝑉 ]𝐺 is a finitely generated ℂ-algebra and integral (as a subalgebra of ℂ[𝑉 ]),
we can associate an irreducible complex variety 𝑋 to this ring. Since ℂ[𝑉 ]𝐺 ⊆ ℂ[𝑉 ]
is integral, we get an induced closed surjective morphism 𝑉 → 𝑋 . One can show
that 𝑋 is as a set equal to the orbit space 𝑉/𝐺 and that 𝑉 → 𝑉/𝐺 is the quotient
map.

Theorem 3.9 (Shephard–Todd, Serre). For a finite subgroup 𝐺 ⊂ GL(𝑉 ) the following
are equivalent:

1. 𝐺 is a (complex) reflection group.

2. The invariant ring ℂ[𝑉 ]𝐺 is a polynomial ring (i.e., has an algebraically independent
generating set).

3. The variety 𝑉/𝐺 is smooth, i.e., the localization of ℂ[𝑉 ]𝐺 in any maximal ideal is a
regular local ring.

Now, suppose that 𝑉 is symplectic and that 𝐺 ⊂ Sp(𝑉 ).

Since Sp(𝑉 ) ⊆ SL(𝑉 ), there are no reflections in 𝐺.

In particular, if 𝐺 ̸= 1, then 𝐺 is not a reflection group and therefore 𝑉/𝐺 has
singularities.

The singularities are of an interesting type: they are symplectic singularities.

A (projective) symplectic resolution of 𝑉/𝐺 is a (projective) resolution of singularities
𝜋 : 𝑋 → 𝑉/𝐺 such 𝑋 is a smooth symplectic variety and 𝜋 is an isomorphism of
symplectic varieties over the smooth part of 𝑉/𝐺.
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Theorem 3.10 (Verbitsky). If 𝑉/𝐺 admits a symplectic resolution, then 𝐺 is generated
by symplectic reflections.

Example 3.11. (𝑇 *ℂ𝑛)/{±1} does not have a symplectic resolution if 𝑛 > 1.

For which symplectic reflection groups 𝐺 ⊂ GL(𝑉 ) does 𝑉/𝐺 admit a symplectic
resolution?

Work by several authors over the last two decades using the classification of symplectic
reflection groups showed that symplectic resolutions exists only rarely: for example,
among the 𝐺⊛ for irreducible complex reflection group 𝐺 only 𝑆perm

𝑛 , 𝐺(𝑚, 1, 𝑛), 𝜇mat
𝑚

and 𝐺4 admit one.

Latest achievement by Bellamy, Schmitt, and Thiel 2022; Bellamy, Schmitt, and Thiel
2023: reduction to finitely many open cases (45 cases, all in dimension 4).

The invariant theory of a symplectic reflection group 𝐺 ⊂ GL(𝑉 ) is very complicated
and not understood. This already starts with the groups 𝐺⊛ for a complex reflection
group 𝐺.

An important classical fact in the theory of complex reflection groups is the Steinberg
fixed point theorem.

Theorem 3.12 (Steinberg 1964). Let𝐺 ⊂ GL(𝑉 ) be a complex reflection group. Then for
any 𝑣 ∈ 𝑉 the stabilizer subgroup 𝐺𝑣 of 𝑣 is again a complex reflection group (generated
by the reflections which fix 𝑣).

The proof in Steinberg 1964 uses the classification.

Theorem 3.13 (Bellamy, Schmitt, and Thiel 2023). Let 𝐺 ⊂ GL(𝑉 ) be a symplectic
reflection group. Then for any 𝑣 ∈ 𝑉 the stabilizer subgroup 𝐺𝑣 of 𝑣 is again a symplectic
reflection group (generated by the symplectic reflections which fix 𝑣).

Corollary 3.14. If 𝐺 ⊂ GL(𝑉 ) is a symplectic reflection group then the singular locus of
𝑉/𝐺 is of pure codimension two.

Note that the class of complex reflection groups contains the class of
finite Coxeter groups (the real reflection groups), and thus the class of
Weyl groups (the rational reflection groups). The idea behind the “spetses”
program initiated by Broué, Malle, and Michel Broué, Malle, and Michel
1999 is that it seems there are “fake” algebraic groups associated not just
to Weyl groups but to complex reflection groups in general. Given that
the class of symplectic reflection groups contains the class of complex
reflection groups I find the following question intriguing: do some parts of
the “spetses” program make it to the larger class of symplectic reflection
groups? Surely not everything, maybe nothing—but maybe something!?
— Thiel 2021
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