What are "Lie Alqubcas" about?

First, a clarification:

Bruce Lee (1940-1973)
Notice the difference in spelling!

Tophus Lie (1842-1899)
(pictures from wikipedia, public
domain)
guess you remember what a group is. I'm sure you also know where this concept comes from:

E.g. every polynomial has a Galois group permuting the roots. A geometric object has a group of symmetries leaning the object unchanged, e.gg for a triangle in the plane

(picture from an Tiki)

6 symmetries (dihedral group of order $6 \simeq$ symmetric group S_{3})
Knowing about symmetries is very important as it helps to simplify things.
We mathematicians can study symmetry without necessarily having a concrete ojject/robbem in mind. Can do this by studying an (abstract) group G. This brings us to the following concept.

A (linear) representation of a group G is a group morphbsm $\rho: G \rightarrow G L(V)$ for some rector space V. Note that since ρ is a group morphism, every relation that holds in G, also holds between the linear operators $\rho(g), g \in G$, on V, Le. the symmetry encoded abstractly in G is now more concretely also preant in these linear operators. So, basically, a representation is a linear object obeying the symmetries encoded in G.
You know what a subspace $U \leq V$ is, right? So, what's a suprepresentation of $\rho^{?}$? It's a subspace $U \leq V$ which is stable under all the operators $\rho(g), g \in G$.

Here's an example: consider the representation

$$
\begin{aligned}
\rho: S_{3} & \longrightarrow G L_{3}(\mathbb{R})=G L\left(\mathbb{R}^{3}\right) \\
\sigma & \longmapsto\left(e_{i} \longmapsto e_{\sigma(i)}\right)
\end{aligned}
$$

$\uparrow_{i-t h}$ standard basis rector
Let $U \subset \mathbb{R}^{3}$ be the line spanned by $e_{1}+e_{2}+e_{3}$. This is stable under S_{3}, ie. it is a subrepresentation.
A representation is called irreducible if it contains no nontrivial (ie. $\neq 0, V$) subrepresentation.
Little exercise: in the S_{3} example above, convince yourself that we get an induced representation on \mathbb{R}^{3} / U, and that this representation is irreducible.

What's the point of this? It is a classical fact (Maschke's theorem) that if G is finite and we work with representations over a held of characteristic zero $(\mathbb{Q}, \mathbb{R}, \mathbb{C}, .$.$) , then$ every representation is (uniquely) a direct sum of irreducible representations. Hence, if we know all irreducible representations, we know all representations.
\Rightarrow irreducible representations are the building blocks of (finite, linear) symmetry.
S_{3} for example has 3 irreducible representations: the 2-dimensional we found above and two further 1-dimensional ones (which?).

In an abstract group, the elements can't see each other:

"I'm so lonely" "I'm solonely"

But actually, very often the symmetry transformations form some "geometric space" and can "see" each other. Consider for example the orientation preserving symmetries of the 2 -sphere in \mathbb{R}^{3}. This is the special orthogonal group $S O(3)$. It contains for example the rotations

$$
R_{z}(\theta):=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \quad, \theta \in[0,2 \pi]
$$

around the z-axis. They vary "continuously" with a parameter θ and we can think of $R_{z}(\theta)$ for "small" θ as an "infinitesimal generator" L_{z} of rotations around the z-axis. This infinitesimal generator is a "tangent rector" to the "space" SO(3).

But how is this a pace? What is space?

Our universe is probably not flat (like \mathbb{R}^{n}) but curved, e.g.

sphere

saddle

torus

But locally (in a small neighbourhood of any point) it is flat, ie. looks like (an open subset of) \mathbb{R}^{n}.
The precise notion of a space which "(orally looks like $\mathbb{R}^{n \prime \prime}$ is that of a manifold. This is a (topological) space M which is ghee together from open subsets of \mathbb{R}^{n} :

> (picture from Wikhipectia,
> author Stomatipoll, License CC BY -SA 3.0)

Here's an example: the circle $S^{1}=\left\{x \in \mathbb{R}^{2} \mid\|x\|^{2}=1\right\}$. How is this a manifold? It is patched together from two parts:

similarly:

$$
\begin{aligned}
& U_{\alpha}:=S^{1} \backslash\{E\} \xrightarrow{\varphi_{\alpha}} \mathbb{\simeq} \\
& \begin{aligned}
\varphi_{\alpha}(P=(x, y)) & =\text { slope } S \text { of the line through } P \text { and } E \\
& =\frac{y}{1+x}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \left.U_{\beta}:=S^{1} \mid S W\right\} \xrightarrow{\varphi_{\beta}} \mathbb{R} \\
& \varphi_{\beta}(P=(x, y))=\text { slope } t \text { of the line through } P \text { and } W
\end{aligned}
$$

$$
=\frac{y}{1-x}
$$

Transition function on the overlap is $\left.\tau_{\alpha \beta}=\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \mathbb{R} \backslash S 0\right\} \rightarrow \mathbb{R} \backslash\{0\}, s \mapsto \frac{1}{t}$.
This is a diffeomorphism (differentiable isomorphism). ${ }^{\alpha} \Rightarrow S^{1}$ is a 1-dimensional manifold.
You can do a similar construction for the 2-sphere S^{2}, and more generally for S^{n}.

Let M be a manifold. We want to define tangent directions in a point $x \in M$. Imagine, you sit in a car, drive with full speed on M, you dive through, x, and then exactly in x, your car gets out of control and flies straight off M. That's a tangent vector.

More precisely: take a chart (U, φ) around $x, \varphi: U \cong \xlongequal{\cong} V \leqq \mathbb{R}^{1}$. Take a path

$$
\gamma:(-1,1) \rightarrow U \leq X
$$

such that $\gamma(0)=x$ and such that $\varphi \circ \gamma:(-1,1) \rightarrow \mathbb{R}^{n}$ is a differentiable map. Then we can think of $D(\varphi \rho \gamma)(0) \in \mathbb{R}^{n}$ as a tangent vector in x on M.

$T_{x} M$

(picture fromm Wikipedia)

Two distinct paths can rel the same tanguy rector \leadsto introduce an equivalence relation on paths $\leadsto \rightarrow$ get a vector space $T_{x} M$ of equivalence closer (tangent space in x) We have $T_{x} M \simeq \mathbb{R}^{n}$.

Heres'an example for the 2-sphere (Wikipedia):

(picture from wikipedia)

A (differentiable) map $f: X \rightarrow Y$ of manifolds induces a linear map

$$
T_{x} f: T_{x} X \rightarrow T_{f(x)} Y
$$

$\gamma \longmapsto f \circ \gamma \quad$ (transport path to Y)
Back to the topic.
\mathbb{R}^{n}, and any open subset of \mathbb{R}^{n}, is obviously a manifold (there is nothing to patch). Hence,

$$
\operatorname{End}\left(\mathbb{R}^{n}\right) \simeq \operatorname{Mat}_{n}(\mathbb{R}) \simeq \mathbb{R}^{n^{2}}
$$

is a manifold (of dimension n^{2}). The determinant map

$$
\operatorname{det}: \operatorname{Mat}_{n}(\mathbb{R}) \longrightarrow \mathbb{R}
$$

$A \longmapsto \operatorname{det} A$
is given by polynomials in the entries (coordinates) \Rightarrow this is a continuous map, hence

$$
G L_{n}(\mathbb{R})=\operatorname{det}^{-1}(\underbrace{\mathbb{R} \backslash\{0\})}_{\text {an green subset of } \mathbb{R}}
$$

is an open rabat of Mat $_{n}(\mathbb{R}) \Rightarrow$ it is a (sub-) manifold and

$$
\begin{array}{rl}
T_{x}\left(G L_{n}(\mathbb{R})\right) & \simeq \text { naturally }_{n}(\mathbb{R}) \\
R & 12 \\
\mathbb{R}^{n^{2}} & \simeq \mathbb{R}^{n^{2}}
\end{array}
$$

Now, what about $S O(3)=\left\{A \in M_{a} t_{3}(\mathbb{R}) \mid A \cdot A^{t}=I, \operatorname{det}(A)=1\right\} ?$
$\square^{\text {related to implicit function theorem. }}$
Preimage Theorem: Let $f: X \rightarrow Y$ be a differentiable map of manifolds and let $y \in Y$ be a regular value (meaning that $T_{x} f: T_{x} x \rightarrow T_{y}$ is surjective $\forall x \in f^{-1}(y)$). Then $f^{-1}(y) \subseteq X$ is a submanifold.

Apply this to the map

$$
\begin{aligned}
f: \operatorname{Mat}_{n}(\mathbb{R}) & \longrightarrow \operatorname{Mat}_{n}(\mathbb{R}) \\
A & \longmapsto A \cdot A^{t}
\end{aligned}
$$

This map is differentiable and one can show that $I \in M_{a} t_{n}(\mathbb{R})$ is a regular value.

$$
\Rightarrow O(n)=\left\{A \in M_{a} t_{n}(\mathbb{R}) \mid A \cdot A^{t}=I\right\}=f^{-1}(I d)
$$

is a submanifold.

Note $A \cdot A^{t}=I \Rightarrow \operatorname{det}(A)^{2}=1 \Rightarrow \operatorname{det} A= \pm 1$. Hence,

$$
S O(n)=\left(\left.\operatorname{det}\right|_{O(n)}\right)^{-1}(\underbrace{\mathbb{R}_{>0}}_{\text {open subset of } \mathbb{R}})
$$

is an green subset of $O(n) \Rightarrow$ it is a manifold. It's dimension is $n^{2}-\frac{n(n+1)}{2}=\frac{n(n-1)}{2}$.
So, e.g. $\operatorname{dim} S O(3)=3$. Hence, $\operatorname{dim} T_{\text {Id }}(S O(3))=3$, ie. we have 3 tangent directions. $\tau 1$ density
The three tangent directions are precisely the infinitesimal generators L_{x}, L_{y}, L_{z} of rotation around the x, y, z-axis, respectively.

Now, the tangent space is in this case not just a rector space, it has more structure. Since $S O(n)$ is an oren submanifold of $O(n)$ and $O(n)$ is a closed submanifold of $G L_{n}(\mathbb{R})$, we naturally have an embedding

$$
\text { so }(n):=T_{I d}(S O(n))=T_{I d}(O(n)) \longrightarrow T_{I_{d}}(G l(n))=: g l(n) \simeq M_{a t}(\mathbb{R})
$$

Under this identification, so $(n)=\left\{\right.$ shew-symmetric matrices, ie. $\left.A^{t}=-A\right)$.
For so (3) one can identify

$$
L_{\mathrm{x}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \quad L_{\mathrm{y}}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], \quad L_{\mathrm{z}}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

The commutator of two matrices $A, B \in M_{a} t_{n}(\mathbb{R})$ is

$$
[A, B]:=A B-B A \quad([A, B]=0 \text { it } A, B \text { commute })
$$

One can check that under the above embedding so (n) is stable under taking commutators (ie. If $A, B \in \operatorname{so}(n)$ then $[A, B] \in$ so (n)). You can check that for so (3):

$$
\left[L_{x}, L_{y}\right]=L_{z},\left[L_{z}, L_{x}\right]=L_{y}, \quad\left[L_{y}, L_{z}\right]=L_{x}
$$

These commutator relations between the infinitesimal generators of rotation is of fundamental importance.

In general: a group which is at the same time a manifold is called a Lie group If G is a Lie group, one can always define a bracket $[i, \cdot]$ on the tangent space $\mathrm{Lie}_{\mathrm{e}}(G):=T_{d d} G$ satisfying similar propotier as the commutator. Such a structure is called a Lie algebra.

The Lie algebra of a Lie group is an "infinitesimal residue" of the Lie group. It is so important because it is much simpler (vector space + extra structure) but still seer a lot of G.

For example, if $\rho: G \longrightarrow G L(V)$ is a representation of a lie group, then its differential gives a linear map

$$
T_{\text {id }} \rho: L_{i e}(G)=T_{i d} G \longrightarrow T_{i d} G L(V)=g l(V)
$$

satisfying

$$
\left(T_{i d} \rho\right)([A, B])=\left[T_{i d}(\rho)(A), T_{i d}(\rho)(B)\right]
$$

i.e. $T_{i d} \rho$ is a representation of the Lie algebra Lie (G)!

There is also a partial converse to this.
Lie algebras and their representations are thus a key took in studying lie groups and their representations. This is the motivation for this course.

A nice feature of Lie theory is that often things are controlled by discrete combinatorial data \leadsto allows explicit calculations and computer experiments.

Curious? Then follows the course! We will only be conconed with lie algebras, no manifolds, so don't worry if you didn't understand all details.

