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What are
"

Lie Algebras
"

about ?

First
,
a clarification :

(pictures from
Wikipedia , public
domain)

Bruce Lee (1940-1973) Sophus Lie (1842-1899)

ᵗ\
Notice the difference in spelling !

I
guess you remember what a grot is

.

I'm sure you
also know where this concept comes from :

symmetry
E.
g. every polynomial has a Galois group permuting the roots

.

A geometric object has a group of
symmetries leaving the object unchanged, e.g. for a triangle in the plane

( picture from own
Tik Z)

6 symmetries (dihedral group of order 6 ≈ symmetric group G)

Knowing about symmetries is
very important as

it helps to simplify things.
We mathematicians can study symmetry without necessarily having a concrete object/problem in mind

.

Can do this by studying an (abstract ) group G. This brings us to the following concept.

A (linear) refection of a group G is a group morphism g : G→ GLCV) for some rector space V.

Note that since g is a group morphism , every relation that holds in G
,
also holds between the

linear operators g(g) , g c-G ,
on V

,
i.e. the symmetry encoded abstractly in G is now more

concretely also present in these linear operators. So, basically , a representation is a linear object

obeying the symmetries encoded in G.

You know what a subspace U ≤ V is, right ? So, what's a suprtn of g ?
It's a subspace U ≤ V which is stable under all the operators g(g) , g c-G.



Here's an example : consider the representation
¢symmetric group

g :S}→ G↳ ( IR) = GLORY

0 1- ( ei ↳ eoci ) )
↑
i-th standard basis rector

Let U -1123 be the line spanned by e. + ez + ez . This is stable under §
,

lie
.

it is a subrepresentation.

A representation is called inedible if it contains no non-trivial ( i.e. ≠ 0,4 subrepresentation .

Little exercise : in the § example above
,
convince yourself that we get an induced representation on

R%
,

and that this representation is irreducible.

What's the point of this ? It is a classical fact (Marschke 's theorem ) that if G is finite
and we work with representations over a field of characterise (Q, R,

E
,

. .

)
,
then

every representation is (uniquely ) a direct sum of irreducible representations .
Hence

, if we know all irreducible representations, we
,

know all representations.

⇒ irreducible representations are the building blocks of ( finite
,
linear) symmetry .

§ for example has 3 irreducible representations : the 2-dimensional we found above
and two further 1- dimensional ones (which ? ) .

In an abstract group,
the elements can't see each other :

⑥ ⑥

g h

"

I'm so lonely
" "

I'm so lonely
"

But actually , very often the symmetry transformations form some
"

geometric space
"

and can
"

see
" each other

. Consider for example the orientation preserving symmetries
of the 2-sphere in IR? This is the special orthogonal group SO(3). It contains for example
the rotations

Rz (⊖ ) : =
→

"

"

) ,
D- c- [0,21T]sin ⊖ cos -0

around the z-axis
. They vary

"

continuously
"

with a parameter -0 and we can think of Rda
for

"

small " ⊖ as an

" infinitesimal generator
"

Lz of rotations around the z-axis. This infinitesimal

generator is a
"

tangent rector
"

to the "

space
"

SO(3)
.

But how is this a space ?
What is space ?



quantamagazine.org/what-
is-the-geometry-of-the-
universe-20200316/

Our universe is probably not flat ( like IR" ) but cursed , e.g.

;
r¥ Ex€

sphere saddle torus

But tag ( in a small neighbourhood of any point) it is flat,
i. e. looks like (an open subset of) IR?
The precise notion of a space which

"

locally looks like IR
" "

is

that of a manifold This is a (topological ) space M which is

glued together from open subsets of Rn :

Browser screenshot
,
check out

= 4ps
◦

42
'

≈
≈

" 1%-1

(picture from Wikipedia,
author Stomatapoll ,

License CC BY- SA 3.0)

Here's an example : the circle 5 = { ✗c- 1122 / 11×112--11 . How is this a manifold ? It is patched together
from two parts :

✗ = ◦ similarly : ✗ = ◦

Us :-. 51 {El R Up : = SYIWI IR

ftp.qy ) ) = slopes of the line through P and E yp(p=(×, y )) = slope t of the line through P and W

=¥× = ,¥
Transition function on the overlap is Tgs = Ypoyj

'
: 1121501→ 1121101

,

s É .

This is a diffeomorphism ( differentiable isomorphism ) . ⇒ S^ is a 1- dimensional manifold.

You can do a similar construction for the 2-sphere 52
,
and more generally for S?



Let M be a manifold
.

We want to define tan#ns in a point ✗ c-M.

Imagine , you sit in a car
,
drive with full speed on M

, you
drive through ×

,
and then

exactly in ×
, your car gets out of control and flies straight off M.

That's a tangent vector
.

More precisely : take a chart (U
, 4) around × , y : UE> V≤ IR

"

.

Take a path

y : fl , 1)→ U ≤ ✗

such that 810) = ✗ and such that yoy :(-1 , 1)→ IR
"

is a differentiable map .

Then we can think of Dlyoj) /O) c-Rn as a tangent vector in ✗ on M .

(picture from Wikipedia)

Two distinct paths can yield the same tangent rector → introduce an equivalence
relation on paths → get a vector space IM of equivalence classes (tang-e in × )

We have IM ≈ IR?

Heres ' an example for the 2-sphere (Wikipedia) :

Tpm ≈ ¢22

P

(picture from Wikipedia)

52 = { ✗c- 1123 / 11×11=1}



A (differentiable) map f- : ✗→Y of manifolds induces a linear map

If : I. ✗ → Tea, Y

y fog (transport path to Y)

Back to the topic.

IÑ
,
and

any open subset of IRT is obviously a manifold ( there is nothing to patch ) . Hence,

End (Rn) - Matn GR)≈Rñ

is a manifold /of dimension n4
.

The determinant map

det : Matn lid→ IR
A → detA

is given by polynomials in the entries (coordinates)⇒ this is a continuous map, hence

64412) = det
- '

(1/2403)
-

an open subset of IR

is an open subset of Matn/R ) ⇒ it is a (sub-1 manifold and

I (644/21)
" ""

Matn/R)

12 12

12
"

≈ 1/2^2

Now
,
what about SO(3) = {Ac-Mat, CIRI / A.At = I, dollA) = I } ?

[
related to implicit function theorem .

Preimagetheorem : let f : ✗→Y be a differentiable map of manifolds and let y c-Y be a

rgaK (meaning that If : If → YT is surjective the f-
'

(yl ) . Then f-
'

(g) ≤ ✗
is a submanifold

.

Apply this to the map

f- : Matn (IR)→ Matn HR )

A A. At

This map is differentiable and one can show that Ic-Matn HR) is a regular value .

⇒ Oln) = { Ac-Matn CRI I A.Aᵗ=I}= f- '

(Id)

is a submanifold .



Nole A. At -- I ⇒ diet (A)2=1 ⇒ dett = ± 1. Hence
,

Sant = (det / on , )
"

( IR> ◦ )
-

Open subset of IR

is an open subset of Ocn) ⇒ it is a manifold . It's dimension is n2 _ n¥ˢ = MEI .

So
,
e. g. dim SO(3) =3. Hence , dim 5013 ) ) =3

,
i.e . we have 3 tangent directions .

I Identity

The three tangent directions are precisely the infinitesimal generators Lx , Ly, ↳ of
rotation around the ✗

, y , 2-
- axis

, respectively .

Now
,
the tangent space is in this case not just a rector space , it has

more structure
. Since Socn) is an open submanifold of OCM and Oln) is

a closed submanifold of Gln HR), we naturally have an embedding
so (n ) :=TId(SO(n ) ) = TID ( OCN )→ Tea (Gkn) ) = : gl(n ) ≈ Matn HR)

Under this identification
,
so (n ) = { skew - symmetric matrices

,
i - e

. At = - A)
.

For so (3) one can identify

The commutator of two matrices A
,
B c-Matn HR) is

[A ,
B] : = AB -BA ( EA, D= O ith AB commute )

One can check that under the above embedding soln) is stable under taking
commutators ( ie . if A ,B c- socn ) then [A

,
B) c- solnl )

. You can check that for so (3) :

[↳ Ly] = Lz , [Lz , 4) = Ly , [Ly , Iz] =L ✗

These commutator relations between the infinitesimal generators of rotation is of fundamental
importance .

In general : a group which is at the same time a manifold is called aliegroup.tlG is a Lie
group, one can always define a bracket Ei] on the tangent

space Lie (G) :=TµG satisfying similar properties as the commutator
.

Such a structure is called a Liealsᵈ

The Lie algebra of a Lie group is an
"

infinitesimal
"

of the Lie group.
It is so important because it is much simpler (vector space + extra structure ) but
still sees a lot of G.



For example , if g :G-> GLCV) is a representation of a Lie group, then
its differential gives a linear map

Tag : Lie (G) = Tid G- Tid GLCH = glad

satisfying

( Tid g) ( [A ,B] ) = [Tid (g) (A), Tid (g) (B)],
i. e. Tid g is a representation of the Lie algebra Lie (G) !

There is also a partial converse to this .

Lie algebras and their representations are thus a key tool in studying Lie groups
and their representations. This is the motivation for this course .

A nice feature of Lie theory is that often things are controlled by discrete
combinatorial data → allows explicit calculations and computer experiments.

Curious ? Then follow the course ! We will only be concerned with lie algebras, no
manifolds

,
so daitworryifyoudidoitundostandadetais .


