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Introduction

You all know what a ring is: it’s a set with an addition and a multiplication. But
the poor elements of a set just can’t talk to each other. Isn’t this depressing? So,
let’s lift the concept of a set up a level and allow elements (objects) to talk to each
other via morphisms. What we get is called a category and what we just did was
“categorifying” a mathematical concept. Let’s assume we also have a multiplication
on our set and that it has a unit element, i.e. we have a monoid. Can we categorify
this concept, too? Of course: we not just multiply objects but also morphisms and
we need a unit object. What we get is called a monoidal category. By now you can
believe that lifting the concept of addition up a level will work like charm as well,
and when we have all that in a compatible manner we call this a tensor category.
So, a tensor category is the categorification of the concept of a ring. A simple (but
boring) example is the category of vector spaces with tensor product and direct
sum. There are many more examples from all over mathematics, mathematical
physics, and even computer science. The fun thing is that on the categorical level
things happen that you just can’t see a level downstairs. This is the basic theme of
categorification. The structure of tensor categories is rich and fascinating, they are
subject of extensive research.

The goal of this course is to expose you to categorical thinking and the general
idea of categorification. Tensor categories make an excellent topic for this. I have
selected some examples, constructions, and results that I find interesting and hope
you enjoy as well. I will not assume you know about categories already and will tell
you what’s necessary to know without getting lost too much in abstract nonsense.
I believe that familiarity with basic algebraic structures should be sufficient—but
the more you have seen the better it will be. Please send feedback if anything is
unclear (I may want to publish these notes eventually and any feedback will be
helpful). My introduction above was quite sloppy on purpose but the main text will
be precise.

The notes are at a very early stage and cover so far only some basic
category theory. My idea was to prepare you for the excellent recent book on
tensor categories by Etingof, Gelaki, Nikshych, and Ostrik [4]. Once I have given a
few iterations of this course, I will try to cover basics of tensor categories here as
well.

Acknowledgments
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notes. Cedric Brendel, Alexander Dinges, Markus Kurtz, Tamara Linke, Helena
Petri, Adrian Rettich, Erec Thorn (all from my 2020/2021 course).
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CHAPTER 1

Categories

Whenever you introduce a mathematical structure (like groups, vector spaces,
topological spaces) you also want to be able to relate objects having such a structure.
Especially, you want to be able to make precise what it means for two objects
being “structurally equal”. Often, there is a natural notion of “structure preserving
maps” and you consider two objects as structurally equal when you have such
maps in both directions which are pairwise inverses of each other. The technical
term for a structure preserving map is homomorphism (coming from the Greek
homos meaning “similar” and morphe meaning “form” or “shape”) and the technical
term for an invertible homomorphism as above is isomorphism (from Greek iso
meaning “equal”). Most people just say morphism instead of the longer word
homomorphism. You should now pause for a minute and recall what morphisms
and isomorphisms are for groups, vector spaces, and topological spaces.

I’m sure you will immediately agree that the concept of “objects” and “mor-
phisms” is very general and occurs everywhere in mathematics (and beyond). The
formal mathematical stage to deal with objects and morphisms is that of a cate-
gory. Even though this concept is very natural, it was introduced only in 1945 by
Samuel Eilenberg and Saunders MacLane [3]. Their working ground at this time
was algebraic topology. This is the study of topological spaces by algebraic means,
so you are connecting two completely different worlds: the topological category and
an algebraic category like the category of groups. Even though category theory is
too general to tell you how to do this explicitly, it will still guide you what to look
for and exposes general principles of such a connection. This is extremely powerful.
Category theory is not just a language as some people say; it is a way of thinking
and of approaching mathematical problems. It will change you forever.

Are you curious? Then let’s go. I emphasize that algebraic topology will not
play a role here—it is simply one motivating context and an excellent illustration
of the power of these concepts. Category theory is a vast subject with infinitely
many applications, even going deep into philosophy. I will only touch some basics I
will need in the course. If you want to know more, there’s the classic reference by
MacLane [8] and, e.g., [1], [11], and [2].1

1.1. Definition and basic examples

A category has objects and morphisms, each morphism has a source and a
target object, and whenever you have two morphisms such that the target of one is

1I personally find the book by MacLane a bit dry but please ignore my opinion and see
yourself. I actually never read a category theory book cover to cover; I picked up things on the
fly when I had a problem or application in mind. Actually, for the very basics I really simply
recommend the Wikipedia articles!
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the source of the other, you can compose them; composition should be associative
and have an identity. Let’s write this down formally.

Definition 1.1.1. A category 𝒞 consists of:
∙ a collection 𝒞0 of objects,
∙ a collection 𝒞1 of morphisms,
∙ maps 𝑠 : 𝒞1 → 𝒞0 giving the source (or domain) and 𝑡 : 𝒞1 → 𝒞0 giving

the target (or codomain) of morphisms,
∙ a map

∘ : {(𝑓, 𝑔) ∈ 𝒞1 × 𝒞1 | 𝑡(𝑓) = 𝑠(𝑔)} → 𝒞1 (1.1)
giving the composition of pairs of composable morphisms, and this
map has to satisfy the following properties:
(1) source and target are respected, i.e.

𝑠(𝑔 ∘ 𝑓) = 𝑠(𝑓) and 𝑡(𝑔 ∘ 𝑓) = 𝑡(𝑔) , (1.2)

(2) associativity, i.e.

(ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓) (1.3)

whenever 𝑡(𝑓) = 𝑠(𝑔) and 𝑡(𝑔) = 𝑠(ℎ),
(3) existence of an identity, i.e. for each 𝑋 ∈ 𝒞0 there is id𝑋 ∈ 𝒞1 with

𝑠(id𝑋) = 𝑋 = 𝑡(id𝑋) and

𝑓 ∘ id𝑋 = 𝑓 and id𝑋 ∘𝑔 = 𝑔 (1.4)

for any 𝑓 ∈ 𝒞1 with 𝑠(𝑓) = 𝑋 and any 𝑔 ∈ 𝒞1 with 𝑡(𝑔) = 𝑋.

We simply write 𝑋 ∈ 𝒞 instead of 𝑋 ∈ 𝒞0. Also, we often write Ob𝒞 instead of
𝒞0 and Mor𝒞 instead of 𝒞1. The word morphism is short for homomorphism and
it is more common to write Hom𝒞 instead of Mor𝒞 . We write 𝑓 : 𝑋 → 𝑌 to indicate
that 𝑓 is a morphism with source 𝑋 and target 𝑌 . By Hom𝒞(𝑋,𝑌 ) we denote the
collection of all such morphisms. For any triple 𝑋,𝑌, 𝑍 of objects the composition
(1.1) gives a map

∘ : Hom𝒞(𝑋,𝑌 )×Hom𝒞(𝑌,𝑍)→ Hom𝒞(𝑋,𝑍) . (1.5)

In practice, it is often more convenient to specify a category by specifying a mor-
phism collection Hom𝒞(𝑋,𝑌 ) for all pairs of objects and a composition map as in
(1.5) for all triples of objects subject to associativity and identity. Then one takes
Hom𝒞 to be the disjoint union of the Hom𝒞(𝑋,𝑌 ), and the source and target maps
are the obvious ones. I call this a “local” definition in contrast to a “global” defini-
tion. As in group theory you can easily see that there is a unique identity morphism
for each object: if there is another identity id′

𝑋 , then

id′
𝑋 = id′

𝑋 ∘ id𝑋 = id𝑋 (1.6)

by the property of the identity. The notation 1𝑋 for id𝑋 is also very common.

Let’s look at some examples to give some life to this abstract nonsense.

Example 1.1.2. The prime example of a category is the category of sets,
denoted Set: the objects are sets, the morphisms are maps, the composition is the
usual composition of maps, and the identity is the identity map. Many mathematical
structures you are already familiar with are sets with extra structure and morphisms
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Category Objects Morphisms
Set sets maps
Mon monoids monoid morphisms
Grp groups group morphisms
Ab abelian groups group morphisms
𝐾-Vec 𝐾-vector spaces 𝐾-linear maps
Ring rings ring morphisms
CRing commutative rings ring morphisms
𝑅-Mod (left) 𝑅-modules 𝑅-linear maps
𝑅-Alg 𝑅-algebras 𝑅-algebra morphisms
Top topological spaces continuous maps
Man smooth manifolds 𝐶∞-maps
Ban Banach spaces bounded operators

Table 1.1. Basic examples of categories. I am not mentioning the
composition and identity because it’s always the set-theoretic one.
Recall that a monoid is a set equipped with a binary operation
that is associative and that has a neutral element (so, a group is
a monoid in which every element is invertible). A monoid mor-
phism is a map that is compatible with the operation (like a group
morphism). A ring in this course is always assumed to be associa-
tive with unit, and ring morphisms are always assumed to preserve
the unit. An 𝑅-module over a ring 𝑅 is defined like a vector
space—just over a ring. For a commutative ring 𝑅, an 𝑅-algebra
is a ring 𝐴 equipped with an 𝑅-module structure that is compatible
with the multiplication in 𝐴, i.e. 𝑟(𝑎𝑎′) = (𝑟𝑎)𝑎′ = 𝑎(𝑟𝑎′); and an
𝑅-algebra morphism is a ring morphism 𝑓 : 𝐴 → 𝐴′ with 𝑓(𝑟𝑎) =
𝑟𝑓(𝑎).

are maps of sets preserving the extra structure. As a rule of thumb, this always gives
you a category. Table 1.1 lists some examples.

Exercise 1.1.3. What’s your favorite example of a category?

All examples of categories we looked at so far were sets with extra structure.
This story gets a bit boring. The main point of categories is that they are com-
pletely abstract and general. Look at the definition: objects don’t need to have an
underlying set and morphisms don’t need to be maps of sets. Let’s look at some
more abstract examples.

Example 1.1.4. We first go easy and consider again sets as objects. But as
morphisms between two sets 𝑋 and 𝑌 we now consider subsets 𝑅 ⊆ 𝑋 × 𝑌 , i.e.
relations between 𝑋 and 𝑌 . Why does this form a category? First, part of the
data of a category is the composition. What is the composition of two relations
𝑅 ⊆ 𝑋 × 𝑌 and 𝑆 ⊆ 𝑌 × 𝑍? We define it as

𝑆 ∘𝑅 := {(𝑥, 𝑧) ∈ 𝑋 × 𝑍 | (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈ 𝑆 for some 𝑦 ∈ 𝑌 } . (1.7)

Convince yourself that this is associative. This composition has an identity, namely
the trivial relation

1𝑋 := {(𝑥, 𝑥) | 𝑥 ∈ 𝑋} . (1.8)
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Hence, we get the category Rel of relations. While objects still have an underlying
set, morphisms are not maps of sets anymore (note that a map is a special relation).
Hence, things like 𝑓(𝑥) for a morphism 𝑓 in this category don’t make any sense!

Example 1.1.5. We still go easy and consider a group 𝐺 and fix a field 𝐾.
Recall that the general linear group GL(𝑉 ) of a 𝐾-vector space 𝑉 is the group
of all invertible linear maps 𝑉 → 𝑉 . After choosing a basis of 𝑉 , this group is
isomorphic to GL𝑛(𝐾) where 𝑛 is the dimension of 𝑉 . A representation of 𝐺
over 𝐾 is a group morphism 𝜌 : 𝐺→ GL(𝑉 ) from 𝐺 into the general linear group of
a 𝐾-vector space 𝑉 . So, for every 𝑔 ∈ 𝐺 you get an automorphism 𝜌(𝑔) on 𝑉 , i.e. a
“linear symmetry” of 𝑉 and these symmetries obey the relations in 𝐺. This is how
you should think about representations. There’s an obvious notion of morphism
between representations 𝜌 : 𝐺→ GL(𝑉 ) and 𝜌′ : 𝐺→ GL(𝑉 ′), namely a linear map
𝑓 : 𝑉 → 𝑉 ′ such that the diagram

𝑉 𝑉 ′

𝑉 𝑉 ′

𝑓

𝜌(𝑔) 𝜌′(𝑔)

𝑓

(1.9)

commutes for any 𝑔 ∈ 𝐺. Maybe you have never heard of commutative diagrams:
a diagram is simply a collection of objects in some category connected by some
morphisms; and the diagram is commutative when all paths in the diagram with
the same start and end point lead to the same result after composition of all the
morphisms that make up the path. The commutativity of (1.9) simply means that

𝑓 ∘ 𝜌(𝑔) = 𝜌′(𝑔) ∘ 𝑓 . (1.10)

You can convince yourself that with the usual composition of maps you get a cat-
egory that we will denote by Rep𝐾(𝐺). While morphisms in this category are still
maps, objects are also maps and things like 𝑥 ∈ 𝜌 don’t really make sense.

Example 1.1.6. Now, we go completely abstract. A quiver2 𝑄 consists of a
set 𝑄0 of vertices, a set 𝑄1 of arrows, and maps 𝑠, 𝑡 : 𝑄1 → 𝑄0 assigning to each
arrow 𝑎 ∈ 𝑄1 its source 𝑠(𝑎) and target 𝑡(𝑎). So, a quiver is basically a directed
graph but we also allow loops and multiple parallel edges which is usually excluded
in the definition of directed graphs. Here’s an example of a quiver:

∙ ∙ (1.11)

A morphism 𝑓 : 𝑄 → 𝑄′ between quivers consists of maps 𝑓0 : 𝑄0 → 𝑄′
0 and

𝑓1 : 𝑄1 → 𝑄′
1 such that

𝑓0 ∘ 𝑠 = 𝑠′ ∘ 𝑓1 and 𝑓0 ∘ 𝑡 = 𝑡′ ∘ 𝑓1 . (1.12)

So, a morphism simply takes vertices to vertices and arrows to arrows while re-
specting source and target of the arrows. We have an obvious composition of quiver
morphisms and an identity morphism on each quiver, hence quivers form a category
Quiv. Now, things like 𝑥 ∈ 𝑄 and 𝑓(𝑥) don’t really make sense.

You have probably noticed that the definition of a quiver was already part of our
Definition 1.1.1 of a category! Any category is a quiver—only with the extra datum
of a composition and with a loop at each vertex coming from the identity. We denote

2A “quiver” is an archer’s portable case for holding arrows. Pause a minute to admire this
beautiful terminology.
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the underlying quiver of a category 𝒞 by 𝑄(𝒞). Viewing categories as (upgraded)
quivers, forces you to abandon thinking about objects having an underlying set
and morphisms being actual maps. If your objects and morphisms happen to be of
set-theoretic nature, you should of course use this! But when working with general
categories, forget it!

Exercise 1.1.7. Show that any group 𝐺 can naturally be considered as a
category with one object.

Exercise 1.1.8. Show that any partially ordered set can naturally be consid-
ered as a category.

Add examples of empty
category and discrete cat-
egories.1.2. Subcategories

Recall the category Set of sets. Of course we can also consider finite sets with
maps between them and get a category that we denote by set, i.e. with lower case
starting letter. The objects are just special objects of its big brother Set and the
morphisms are exactly the same. You may already guess that set is a subcategory
of Set, and such things occur all the time so let’s make this notion precise.

Definition 1.2.1. A subcategory 𝒞 of a category 𝒞′ consists of:
∙ a subcollection 𝒞0 ⊆ 𝒞′0,
∙ a subcollection 𝒞1 ⊆ 𝒞′1,

such that
(1) for every 𝑓 ∈ 𝒞1 both the source and target of 𝑓 are in 𝒞0,
(2) 𝒞1 is closed under composition in 𝒞′1,
(3) id𝑋 ∈ 𝒞1 for all 𝑋 ∈ 𝒞0.

The subcategory is called full if Hom𝒞(𝑋,𝑌 ) = Hom𝒞′(𝑋,𝑌 ) for all 𝑋,𝑌 ∈ 𝒞.

You can easily convince yourself that 𝒞 with the composition and source and
target maps from 𝒞′ forms itself a category. Full subcategories are easy to specify:
you just need to specify a subcollection 𝒞0 of objects, and then you take 𝒞1 to be
the subcollection of morphisms whose source and target is in 𝒞0; all properties are
then automatically satisfied. Let’s look at some examples.

Example 1.2.2. We already noticed that set is a full subcategory of Set. Simi-
larly, grp is the full subcategory of Grp of finite groups, ab is the full subcategory of
Ab of finite abelian groups (this is at the same time also a full subcategory of grp and
of Grp), 𝐾-vec is the full subcategory of 𝐾-Vec of finite-dimensional vector spaces,
and 𝑅-mod is the full subcategory of 𝑅-Mod of finitely generated 𝑅-modules. If we
have an algebra 𝐴 over a field 𝐾, e.g. the polynomial ring 𝐾[𝑋], we often consider
the full subcategory 𝐴-fdmod of 𝐴-modules which are finite-dimensional over 𝐾.
The field is dropped from the notation but usually this doesn’t cause confusion.
The category 𝐴-fdmod is a full subcategory of 𝐴-mod, and we have equality if 𝐴
is finite-dimensional over 𝐾. Along this line, rep𝐾(𝐺) is the full subcategory of
Rep𝐾(𝐺) of finite-dimensional representations of 𝐺.

Please note that in the literature you will find many different notations for
the categories in Table 1.1 and prominent subcategories. For example, in [4] the
category of all 𝐾-vector spaces is 𝐾-Vec and the finite-dimensional category is
𝐾-Vec. You should always check the conventions.
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Example 1.2.3. An example of a non-full subcategory is the subcategory Set of
the relation category Rel introduced in Example 1.1.4 (recall that maps are special
relations). Another example is the category Man𝑝 of 𝐶𝑝-manifolds with 𝐶𝑝-maps.
Then Man𝑝+1 is a subcategory of Man𝑝 and you may recall from analysis that there
are 𝐶𝑝-maps on the real line which are not 𝐶𝑝+1, so this is not a full subcategory.

1.3. Special morphisms

Let’s talk about morphisms in a general category 𝒞. The following notion should
not come as a surprise.

Definition 1.3.1. A morphism 𝑓 : 𝑋 → 𝑌 in 𝒞 is an isomorphism if there is
a morphism 𝑔 : 𝑌 → 𝑋 in 𝒞 such that 𝑔 ∘ 𝑓 = id𝑋 and 𝑓 ∘ 𝑔 = id𝑌 .

You can easily see that if there is such a 𝑔 it is unique and we call it the inverse
of 𝑓 : suppose there is another such 𝑔′, then

𝑔′ = 𝑔′ ∘ id𝑌 = 𝑔′ ∘ (𝑓 ∘ 𝑔) = (𝑔′ ∘ 𝑓) ∘ 𝑔 = id𝑋 ∘𝑔 = 𝑔 . (1.13)

What are the isomorphisms in Set? Of course, they are the bijective maps. Let’s
recall that a map 𝑓 : 𝑋 → 𝑌 is bi jective if it is injective, i.e. 𝑓(𝑥) = 𝑓(𝑥′) implies
𝑥 = 𝑥′, and sur jective, i.e. for any 𝑦 ∈ 𝑌 there is an 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦. Do
you see a problem with these notions? Yes, they are not categorical! We are working
with elements 𝑥 ∈ 𝑋 and values 𝑓(𝑥), which we learned don’t make any sense in
a general category! Hence, we cannot define isomorphisms in a general category as
being injective and surjective morphisms. Equation 1.13 on the other hand is purely
categorical and the correct general concept.

Of course, if you have a category where the morphisms are actual maps be-
tween sets (all examples in Table 1.1) you can still talk about the non-categorical
notion of bijectivity. You can easily convince yourself that in any such category an
isomorphism will always be bijective (the inverse morphism gives a set-theoretic
inverse making the map bijective). If the set-theoretic inverse then also happens to
be a morphism in your category, then you have an isomorphism. Sometimes, this
is in fact true: in the category of groups, rings, vector spaces, and modules the iso-
morphisms are precisely the bijective morphisms (convince yourself of this again).
But this is simply a fortunate coincidence! Do you know an example where this is
not true, where a bijective morphism is not an isomorphism in the category? Yes,
the category Top of topological spaces! There are standard examples of bijective
continuous maps whose set-theoretic inverse is not continuous, hence not an iso-
morphism in the category. But now that you can think categorically, this should not
even surprise you and you would have never considered bijective continuous maps
as isomorphisms of topological spaces! By the way, the isomorphisms in Top have
a special name (not that we would need one): they are called homeomorphisms.
Similarly, isomorphisms in Man are called diffeomorphisms.

Exercise 1.3.2. Give an example of a bijective continuous map which is not
an isomorphism in Top.

A morphism from an object 𝑋 to itself is called an endomorphism (from
Greek endo meaning “within”). The set of endomorphisms on 𝑋 is denoted by
End𝒞(𝑋). Convince yourself that End𝒞(𝑋) is a monoid with the composition of
morphisms as multiplication and id𝑋 as unit element. An endomorphism which is
also an isomorphism is called an automorphism. We denote by Aut𝒞(𝑋) the set
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of automorphisms of 𝑋. This is exactly the group of units in the monoid End𝒞(𝑋).

Let’s come back to the non-categorical notions of injective and surjective. Let’s
not give up on them yet. Can we somehow re-formulate them categorically? Yes,
we can!

Lemma 1.3.3. Let 𝑓 : 𝑋 → 𝑌 be a map of sets.

(1) 𝑓 is injective if and only if whenever 𝑓 ∘ 𝑔1 = 𝑓 ∘ 𝑔2 for any two maps
𝑔1, 𝑔2 : 𝑍 → 𝑋, then already 𝑔1 = 𝑔2.

(2) 𝑓 is surjective if and only if whenever 𝑔1 ∘ 𝑓 = 𝑔2 ∘ 𝑓 for any two maps
𝑔1, 𝑔2 : 𝑌 → 𝑍, then already 𝑔1 = 𝑔2.

Proof. I just consider the first claim, the second is proven similarly. Suppose
that 𝑓 is injective. Then 𝑓(𝑔1(𝑥)) = 𝑓(𝑔2(𝑥)) implies 𝑔1(𝑥) = 𝑔2(𝑥) for any 𝑥 ∈ 𝑋,
so 𝑔1 = 𝑔2. Conversely, suppose the other property holds. Assume that 𝑓(𝑥) = 𝑓(𝑥′)
for some 𝑥, 𝑥′ ∈ 𝑋. Let {*} be a one-element set and define maps 𝑔1, 𝑔2 : {*} → 𝑋
with 𝑔1(*) = 𝑥, 𝑔2(*) = 𝑥′. Then 𝑓 ∘ 𝑔1 = 𝑓 ∘ 𝑔2, so 𝑔1 = 𝑔2, implying that 𝑥 = 𝑥′,
so 𝑓 is injective. �

Note that in these re-formulations we just use morphisms and equality of mor-
phisms, no 𝑥 ∈ 𝑋 and no 𝑓(𝑥). So, this is purely categorical and we can consider
this concept in any category. Morphisms satisfying the categorical condition in 1 are
called monomorphisms, and morphisms satisfying the categorical condition in 2
are called epimorphisms. As we have just seen, in the category Set the monomor-
phisms are precisely the injective maps and the epimorphisms are precisely the
surjective maps. In any category where morphisms are actual maps of sets (all ex-
amples in Table 1.1), it is clear that any injective morphism is a monomorphism
and any surjective morphism is an epimorphism. However, the converse may not
be true and these categorical notions are in fact quite tricky, you need to be very
careful!

Example 1.3.4. Consider the category Ring of rings. We claim that a monomor-
phism 𝑓 : 𝑅→ 𝑆 is injective (so that monomorphisms in Ring are precisely the in-
jective ring morphisms). Suppose it is not. Then there are distinct elements 𝑟, 𝑟′ ∈ 𝑅
with 𝑓(𝑟) = 𝑓(𝑟′). Consider the ring morphisms 𝑔1, 𝑔2 : Z[𝑇 ] → 𝑅 with 𝑔1(𝑇 ) = 𝑟
and 𝑔2(𝑇 ) = 𝑟′. Then 𝑓 ∘𝑔1 = 𝑓 ∘𝑔2, so 𝑔1 = 𝑔2 since 𝑓 is a monomorphism but this
is a contradiction. Note that the reason this works is that we have the polynomial
ring Z[𝑇 ] which has the nice property that we can specify a ring morphism out of
it by just specifying where 𝑇 maps to. This is the ring-analogue of the one-element
set {*} that we used in the proof of Lemma 1.3.3.

What about epimorphisms in Ring? Are they precisely the surjective ring mor-
phisms? I have to disappoint you! Consider the beautiful ring morphism 𝑓 : Z→ Q
(there is just one). This is clearly injective and not surjective. I claim it is an epi-
morphism! In fact, let 𝑔1, 𝑔2 : Q → 𝑅 be ring morphisms with 𝑔1 ∘ 𝑓 = 𝑔2 ∘ 𝑓 , so
𝑔1(𝑛) = 𝑔2(𝑛) for all 𝑛 ∈ Z ⊂ Q. Since 𝑔1, 𝑔2 are ring morphisms we have

𝑔1

(︁ 𝑛
𝑚

)︁
= 𝑔1(𝑛 ·𝑚−1) = 𝑔1(𝑛) · 𝑔1(𝑚)−1 = 𝑔2(𝑛) · 𝑔2(𝑚)−1 = 𝑔2

(︁ 𝑛
𝑚

)︁
,
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so 𝑔1 = 𝑔2 and 𝑓 is an epimorphism. Note that the reason this works is that
a ring morphism from Q is already uniquely determined on Z. So, what are the
epimorphisms in Ring then? This is actually an open problem!3

Example 1.3.5. In the category Grp of groups, monomorphisms are again injec-
tive. Namely, if 𝑓 : 𝐺→ 𝐻 is a monomorphism, consider the embedding morphism
𝑔1 : Ker(𝑓) → 𝐺 and the morphism 𝑔2 : Ker(𝑓) → 𝐺 mapping any 𝑔 ∈ Ker(𝑓) to
1 ∈ 𝐺. Then 𝑓 ∘ 𝑔1 = 𝑓 ∘ 𝑔2, so 𝑔1 = 𝑔2 because 𝑓 is a monomorphism, but this
means that Ker(𝑓) = 1, so 𝑓 is injective. As before, we needed a special object—in
this case the kernel—to prove this.

What about epimorphisms in Grp? In contrast to the situation in Ring, it is
in Grp in fact true that epimorphisms are surjective—but this is not so easy to
prove! The claim follows from the general amalgamation theorem due to Schreier
[12] (from 1927). There is an easier direct proof due to Linderholm [7] (from 1970)
that I will recite here. Let 𝑓 : 𝐺 → 𝐻 be an epimorphism of groups. We need to
show that Im(𝑓) = 𝐻. Let 𝑋 := 𝐻/ Im(𝑓) be the set of all right cosets of the
subgroup Im(𝑓) in 𝐻. Let ∞ be some symbol, not a right coset of Im(𝑓) in 𝐻,
and define 𝑌 := 𝑋 ∪ {∞}. Let 𝑆 be the symmetric group on the set 𝑌 . Right
multiplication on 𝑋 with elements from 𝐻 induces an embedding 𝑔1 : 𝐻 → 𝑆 of 𝐻
into 𝑆 as permutations that fix ∞. Let 𝜎 ∈ 𝑆 be the permutation that exchanges
the coset Im(𝑓) with ∞ and fixes everything else. Let 𝑔2 : 𝐻 → 𝑆 be the morphism
defined by 𝑔2(ℎ) := 𝜎−1 ∘ 𝑔1(ℎ) ∘ 𝜎. If ℎ ∈ Im(𝑓), then by definition 𝑔1(ℎ) fixes
the coset Im(𝑓) and the element ∞, hence it commutes with 𝜎. But this means
𝑔1(ℎ) = 𝑔2(ℎ). Hence, 𝑔1 ∘ 𝑓 = 𝑔2 ∘ 𝑓 , so 𝑔1 = 𝑔2 because 𝑓 is an epimorphism. But
this means that 𝑔1(ℎ) and 𝜎 commute for any ℎ ∈ 𝐻. This requires that 𝑔1(ℎ) must
fix the coset Im(𝑓). But this in turn requires that ℎ ∈ Im(𝑓). We thus must have
𝐻 = Im(𝑓), so 𝑓 is surjective as claimed.

Notice the following: after having established this property of epimorphisms in
Grp it is a priori not clear that the same also holds in the subcategory grp of finite
groups (think about it). But when you look into the proof you see that if 𝐻 is finite,
so is the group 𝑆 and the whole proof stays inside the subcategory grp, hence also
in grp every epimorphism is surjective—we are lucky.

Could give example for
𝑅-modules as well. You see that when you generalize some familiar notions of maps to morphisms

in categories—assuming this is even possible—things can become quite complicated.
We will not dig further into this topic here.

1.4. Set-theoretic issues

I was cheating the whole time, right from Definition 1.1.1 on! Did you notice
it? In the definition I was talking about a “collection” of objects and of morphisms.
What is a “collection”? This is just another word for “set” somehow, so why didn’t
I just say “set”?

The problem is set theory. Consider the category Set of sets, so ObSet is the
“collection” of all sets. Now you may remember from set theory that you cannot
form the set of all sets. One particular problem that arises is Russell’s paradox
discovered in 1901. Suppose that ObSet is a set. Then we can form the set 𝑅 :=

3Any localization morphism 𝑅 → 𝑅[𝑆−1] is an epimorphism for the same reason Z → Q is.
But there are ring epimorphisms which are neither surjective nor localization morphisms and it is
very difficult to classify the epimorphisms.
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{𝑥 ∈ ObSet | 𝑥 ̸∈ 𝑥} of all sets not containing themselves. Since 𝑅 is a set, we can
ask whether 𝑅 ∈ 𝑅 or 𝑅 ̸∈ 𝑅. But by construction 𝑅 ∈ 𝑅 implies 𝑅 /∈ 𝑅, and
conversely 𝑅 /∈ 𝑅 implies 𝑅 ∈ 𝑅. So, we end up in a contradiction! And maybe you
know from logic that once you have a contradiction in a logical system, you can
prove any statement to be true, so this is very bad!

I will now tell you how to save the ship. I will say a bit more than is actually
necessary in practice, so your head might start spinning a bit, but I feel it is im-
portant to have heard about this once. In the end, we’ll be very pragmatic about
these issues.

The conclusion of Russell’s paradox is that we need to reconsider under which
circumstances and in which ways we are allowed to build sets. This is called ax-
iomatic set theory, in contrast to naive set theory where one doesn’t care
about anything and arrives at problems like the above. The earliest and still most
widely used axiomatic system is due to Zermelo and Fraenkel (ZF for short), de-
veloped between 1908 and 1922. We will not need the precise axioms here. What
you just need to know is that it is always fine to build from a set 𝒰 and a property
𝜑 the subset {𝑥 ∈ 𝒰 | 𝜑(𝑥)} of all elements of 𝒰 satisfying this property. This is
an axiom of ZF, called restricted comprehension. Part of the other axioms also
tell you that there is an empty set ∅. So, there exists at least one set; and then
you can start building a 1-element set {∅}, a 2-element set {∅, {∅}}, and so on;
and by taking unions, intersections, power sets, etc. you can build more and more
complicated sets—all the way up to the real numbers and beyond. An axiom which
is not part of ZF is the axiom of choice which states that the Cartesian product∏︀
𝑖∈𝐼 𝑋𝑖 of a family of non-empty sets 𝑋𝑖 indexed by a set 𝐼 is non-empty, so that

it is possible to make a choice (𝑥𝑖)𝑖∈𝐼 of an element 𝑥𝑖 ∈ 𝑋𝑖 for each 𝑖 ∈ 𝐼 at once.
You may find it strange that this “obvious” statement is an axiom but one can show
that it is in fact independent of the axioms of ZF. The extension of ZF adding the
axiom of choice is called ZFC. Some people decide not to assume choice at all or
point out explicitly whenever they have to assume it. But I find life with choice
much more beautiful and will therefore always assume this.4

Restricted comprehension in axiomatic set theory is in contrast to unrestricted
comprehension in naive set theory where we build sets out of nowhere, i.e. by
not necessarily specifying a base set 𝒰 as above. Precisely this is at the core of
Russell’s paradox: we would define the set of sets as {𝑥 | } by using unrestricted
comprehension. In axiomatic set theory, this construction is not allowed, hence the
set of sets doesn’t exist, and there is no Russell’s paradox—problem solved!5

4For example, basically all of commutative algebra would not work without the axiom of
choice: one can show that choice is equivalent to the statement that every commutative ring has
a maximal ideal, and what can you do in commutative algebra without this property?

5The fact that ZF erases this one particular issue (and some similar) does not mean that
it is free of any inconsistencies! But now you may wonder why I’m saying this. Isn’t the point
of an axiomatic system that it is consistent? Well, here comes Gödel with his incompleteness
theorems from 1931. If you have a consistent axiom system that is sophisticated enough to model
the natural numbers then: 1) it is incomplete (there are true statements which you cannot prove
in the system); 2) you cannot prove the consistency of the system within the system. Hence, we
don’t know whether ZF is consistent and we cannot prove it! We only believe it is consistent! And
you always thought mathematics was rock solid!?
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But still you can imagine a “collection” ObSet of all sets, even when it is not a
set in the axiomatic sense. Is there any way to deal with this? Yes! You just have to
extend your axiom system to include a new type called class. Every set is a class
(so you have a hierarchy of types), you can do operations with classes like you
do with sets, and there is a class comprehension axiom which asserts that you
can build the class of all sets satisfying some property. In particular, you can form
the class ObSet of all sets! If you are confused and think we were cheating by just
introducing another word for “set”, let me assure you that—similar as before—we
are not allowed to form the class of all classes! So, there is no Russell’s paradox.
The class ObSet is really a proper class, meaning it is not in the lower hierarchy
of sets (because then we would have Russell’s paradox again).

A formal class extension of ZFC was developed by Neumann, Bernays, and
Gödel (NBG for short) between 1925 and 1940. A more flexible and powerful class
extension of ZFC (even of NBG) is due to Morse and Kelley (MK for short) from
about 1950. Maybe you wonder already that when you can define a type extension
allowing you to form a class of sets, can’t you continue this and introduce a further
type into the hierarchy (let’s call it conglomerate) so that we can form the con-
glomerate of classes? Yes, sure you can do this. And of course you can continue this
process. You will probably run out of words for the new types in your hierarchy.
There is an axiomatic system due to Tarski and Grothendieck (TG for short) which
extends MK and allows very flexible infinite chains of such hierarchies based on the
notion of Grothendieck universes.

We will not need any details of these set-theoretic foundations here because this
topic is known to cause health problems. If you’re still curious (but I warned you!),
I recommend [9] as a general introduction to mathematical logic and axiomatic set
theory (covering MK as well) and [13] as a discussion of set-theoretic foundations
for category theory. In practice, most people basically use naive set theory but (try
to) avoid typical traps like Russell’s paradox by accepting that there is this notion
of classes, that you can work with classes like with sets, that every set is a class,
and that you can form the class of all sets. This is what we will do here as well.
Then the correct way to state Definition 1.1.1 is to replace “collection” by “class”
and everything is precise and works. Deal?

1.5. Smallness

It is useful to introduce some terminology to describe categories which are not
“too big” and fit into the lower hierarchy of sets. A category 𝒞 is called small if both
the object class Ob𝒞 and the morphism class Hom𝒞 are actually sets. Most real-life
examples—like all in Table 1.1—are not small, however, since the object class is a
proper class. But what is true in all examples in Table 1.1 is that at least the class
Hom𝒞(𝑋,𝑌 ) of morphisms between any two objects is a set, e.g. if you have two
sets 𝑋 and 𝑌 , then the class of maps between 𝑋 and 𝑌 is the Cartesian product∏︀
𝑥∈𝑋 𝑌 , which is a set. Such categories are called locally small. Depending on the

literature, categories may be locally small by definition. Of course, subcategories of
(locally) small categories are (locally) small as well.

Let’s look at the category set of finite sets. It is of course locally small. But is
it small? I have to disappoint you: the class of finite sets is again a proper class!
Even the class of all one-element sets is a proper class! Here is how to see this. The
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axiom of union in ZF states that for any set 𝐴 there is a set
⋃︀
𝐴 which consists

of the elements of the elements of the set 𝐴. So, if the class 𝐴 of one-element sets
were a set, then

⋃︀
𝐴 would be a set as well. But

⋃︀
𝐴 contains all sets (think about

it), so we would run into Russell’s paradox!
But still there is some “smallness” to set compared to Set, namely when we

consider objects up to isomorphism. Let’s make this precise for a general category
𝒞. Since we can work with classes like with sets, we can consider the relation on
Ob𝒞 given by isomorphism between objects, and then we can form the class [𝒞] of
equivalence classes of this relation. These equivalence classes are called isomor-
phism classes of 𝒞, and the isomorphism class of an object 𝑋 will be denoted by
[𝑋]. Now, we say that the category 𝒞 is essentially small if it is locally small and
the class [𝒞] is a set. Note that a full subcategory of an essentially small category
is again essentially small; but a non-full subcategory does not need to be because
when we have less morphisms, we can have more isomorphism classes.

Example 1.5.1. The category set of finite sets is essentially small: sets up to
isomorphism are uniquely described by their cardinality, hence there is a bijection
[set]→ N, so [set] is a set. On the other hand, the big brother Set is not essentially
small: the class [Set] is (isomorphic to) the class of all cardinal numbers and one
can show that this is not a set. Add reference

Example 1.5.2. The category 𝐾-vec of finite-dimensional 𝐾-vector spaces is
essentially small: vector spaces up to isomorphism are described by their dimension,
hence there is a bijection [𝐾-vec] → N, so [𝐾-vec] is a set. Similarly as above, the
big brother 𝐾-Vec is not essentially small.

Example 1.5.3. Generalizing Example 1.5.2, the category 𝑅-mod of finitely
generated 𝑅-modules is essentially small. Since modules over a general ring do not
need to have a basis, we cannot argue with the dimension as we did with vector
spaces. Instead, we can prove this as follows. If 𝑀 is generated by finitely many
elements 𝑚1, . . . ,𝑚𝑛, then we have a surjective morphism 𝑅𝑛 → 𝑀 mapping the
𝑖-th standard basis vector 𝑒𝑖 to 𝑚𝑖. Hence, 𝑀 is isomorphic to a quotient of 𝑅𝑛.
Quotients of 𝑅𝑛 are determined by the submodule we’re modding out. Submodules
of 𝑅𝑛 are special subsets, so they are all members of the power set 𝒫(𝑅𝑛) of 𝑅𝑛.
This is a set, so the quotients of 𝑅𝑛 form a set. Since

⋃︀
𝑛∈N 𝒫(𝑅𝑛) is a set as well,

the quotients of all 𝑅𝑛 for 𝑛 ∈ N form a set. The isomorphism classes of finitely
generated 𝑅-modules are uniquely described by members of this set, so [𝑅-mod] is
a set. As before, the big brother [𝑅-Mod] is not essentially small (except for if 𝑅 is
the zero ring).





CHAPTER 2

Functors

In the introduction of Chapter 1 I said that whenever you have a mathematical
structure you also want to consider morphisms between them. This observation led
us to the notion of categories. But now a category itself is also a mathematical
structure, so is there a notion of “morphism” between them? Yes, of course! You
would consider a morphism of the underlying quivers (so, you map objects to objects
and morphisms to morphisms while respecting source and target) and this has to
respect the composition and the identity as well. Instead of “morphism” between
categories one uses the fancier term “functor”.

2.1. Definition and basic examples

Let’s formalize this idea.

Definition 2.1.1. A functor 𝐹 : 𝒞 → 𝒞′ between categories 𝒞 and 𝒞′ consists
of:

∙ a map 𝐹0 : 𝒞0 → 𝒞′0, simply denoted 𝑋 ↦→ 𝐹 (𝑋),
∙ a map 𝐹1 : 𝒞1 → 𝒞′1, simply denoted 𝑓 ↦→ 𝐹 (𝑓),

such that the following holds:
(1) 𝐹 is a morphism 𝑄(𝒞)→ 𝑄(𝒞′) of the underlying quivers, i.e.

𝐹0 ∘ 𝑠 = 𝑠′ ∘ 𝐹1 and 𝐹0 ∘ 𝑡 = 𝑡′ ∘ 𝐹1 , (2.1)

(2) 𝐹 is compatible with the composition, i.e.

𝐹 (𝑔 ∘ 𝑓) = 𝐹 (𝑔) ∘ 𝐹 (𝑓) (2.2)

for any composable pair 𝑓, 𝑔 ∈ 𝒞1,
(3) 𝐹 preserves the identity, i.e.

𝐹 (id𝑋) = id𝐹 (𝑋) (2.3)

for any 𝑋 ∈ 𝒞0.

A functor 𝐹 induces “local” maps

𝐹𝑋,𝑌 : Hom𝒞(𝑋,𝑌 )→ Hom𝒞′(𝐹 (𝑋), 𝐹 (𝑌 )) (2.4)

for any pair of objects. As with categories it is in practice often more convenient to
specify the action of a functor on morphisms by such maps.

Example 2.1.2. Every group 𝐺 has an underlying set 𝐹 (𝐺) and every group
morphism 𝑓 : 𝐺 → 𝐻 has an underlying map 𝐹 (𝑓) : 𝐹 (𝐺) → 𝐹 (𝐻) of sets. It is
clear that this process is compatible with composition and preserves the identity. We
thus have a functor 𝐹 : Grp → Set. This functor simply “forgets” about the group
structure and is therefore called a forget functor. For many algebraic structures
with an underlying set—like all in Table 1.1—you have an obvious forget functor

13
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to Set. You can also forget other structure, e.g. you can forget the scalar action on
a vector space and get a forget functor 𝐾-Vec→ Ab.

Example 2.1.3. Examples like the forget functor 𝐾-Vec → Set above are
maybe a bit silly. But we can also construct a less silly one in the opposite direction.
Take a set 𝑋. We can then consider the 𝐾-vector space

𝐾(𝑋) :=
⨁︁
𝑥∈𝑋

𝐾 :=

{︃
(𝛼𝑥)𝑥∈𝑋 ∈

∏︁
𝑥∈𝑋

𝐾 | all but finitely many 𝛼𝑥 = 0

}︃
. (2.5)

This is really just the 𝐾-vector space with a basis {𝑒𝑥}𝑥∈𝑋 indexed by the elements
of 𝑋. This gives us a map Set → 𝐾-Vec on objects. To make this into a functor,
we also need to define a mapping on morphisms. So, let 𝜙 : 𝑋 → 𝑌 be a map of
sets. We can define a linear map 𝑓 : 𝐾(𝑋) → 𝐾(𝑌 ) sending 𝑒𝑥 to 𝑒𝜙(𝑥). It is easy
to see that the mapping 𝜙 ↦→ 𝑓 is compatible with composition and respects the
identity. We have thus defined a functor Set → 𝐾-Vec. In a similar way you can
more generally define a functor Set→ 𝑅-Mod.

Exercise 2.1.4. Define a functor Set→ Grp analogous to Example 2.1.3.

Example 2.1.5. Fix 𝑛 ∈ N. We want to show that taking the general linear
group GL𝑛 over a ring yields a functor GL𝑛 : Ring → Grp. Recall that an 𝑛 × 𝑛-
matrix 𝐴 over 𝑅 is said to be invertible if its determinant det(𝐴) is a unit in
𝑅. Since the determinant is multiplicative, the set GL𝑛(𝑅) of invertible 𝑛 × 𝑛-
matrices over 𝑅 forms a group under matrix multiplication, called the general
linear group. We thus have a map GL𝑛 : Ring → Grp between objects. Always
remember that to specify a functor we also need to specify an action on mor-
phisms. So, to a ring morphism 𝑓 : 𝑅→ 𝑆 we need to associate a group morphism
GL𝑛(𝑓) : GL𝑛(𝑅) → GL𝑛(𝑆). There’s an obvious thing to do. Applying 𝑓 to the
entries of 𝐴 ∈ GL𝑛(𝑅) yields an 𝑛×𝑛-matrix 𝑓(𝐴) over 𝑆. This matrix is invertible
as well since det(𝑓(𝐴)) = 𝑓(det(𝐴)) and a ring morphism maps units to units. The
resulting map

GL𝑛(𝑓) : GL𝑛(𝑅) → GL𝑛(𝑆)
𝐴 ↦→ 𝑓(𝐴)

is easily seen to be a group morphism. It is evident that the mapping 𝑓 ↦→ GL𝑛(𝑓)
is compatible with composition and preserves the identity, so we have constructed
a functor GL𝑛 : Ring→ Grp.

Example 2.1.6. Let 𝒞 be a locally small category. Then for every object 𝑋 ∈ 𝒞
we have the Hom-functor

Hom𝒞(𝑋,−) : 𝒞 → Set (2.6)

which maps 𝑌 ∈ 𝒞 to the set Hom𝒞(𝑋,𝑌 ) and which maps a morphism 𝑓 : 𝑌 → 𝑍
in 𝒞 to the set map

Hom𝒞(𝑋, 𝑓) : Hom𝒞(𝑋,𝑌 ) → Hom𝒞(𝑋,𝑍)
𝑔 ↦→ 𝑓 ∘ 𝑔 . (2.7)

A fundamental property of a functor 𝐹 : 𝒞 → 𝒞′ is that it maps isomorphisms
to isomorphisms. Namely, if 𝑓 : 𝑋 → 𝑌 is an isomorphism in 𝒞 with inverse 𝑔, then

id𝐹 (𝑋) = 𝐹 (id𝑋) = 𝐹 (𝑔 ∘ 𝑓) = 𝐹 (𝑔) ∘ 𝐹 (𝑓) (2.8)
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and
id𝐹 (𝑌 ) = 𝐹 (id𝑌 ) = 𝐹 (𝑓 ∘ 𝑔) = 𝐹 (𝑓) ∘ 𝐹 (𝑔) , (2.9)

hence 𝐹 (𝑓) : 𝐹 (𝑋)→ 𝐹 (𝑌 ) is an isomorphism with inverse 𝐹 (𝑔). Hence, 𝐹 induces
a map

[𝐹 ] : [𝒞]→ [𝒞′] (2.10)
between the classes of isomorphism classes of objects, so a functor can in particular
be viewed as giving a 𝒞′-valued invariant for objects of 𝒞. For example, the general
linear group functor from Example 2.1.5 gives a group-valued invariant of rings:
isomorphic rings have isomorphic general linear groups. This particular example is
probably not so spectacular and surprising but if you have a more complicated or
interesting functor, this can be quite dramatic. Algebraic topology is basically the
construction and study of functors Top→ Grp, which give you an algebraic handle
to study topological spaces.

Exercise 2.1.7. Some functors 𝐹 have the property that they reflect isomor-
phisms, i.e. if 𝐹 (𝑓) is an isomorphism, then so is 𝑓 . Find examples of such functors.
Show that this is not a general feature of functors, however.

2.2. The co-world

In practice, one often encounters maps 𝐹0 : 𝒞0 → 𝒞′0 and 𝐹1 : 𝒞1 → 𝒞′1 between
objects and morphisms of categories which basically define a functor except for one
difference: they reverse source and target. So, (2.1) becomes

𝐹0 ∘ 𝑠 = 𝑡′ ∘ 𝐹1 and 𝐹0 ∘ 𝑡 = 𝑠′ ∘ 𝐹1 , (2.11)

we thus have maps

𝐹𝑋,𝑌 : Hom𝒞(𝑋,𝑌 )→ Hom𝒞′(𝐹 (𝑌 ), 𝐹 (𝑋)) , (2.12)

and the compatibility with composition becomes

𝐹 (𝑔 ∘ 𝑓) = 𝐹 (𝑓) ∘ 𝐹 (𝑔) . (2.13)

Such a thing is called a contravariant functor in contrast to a usual functor as
defined above, which is then sometimes for emphasis called a covariant functor.

Example 2.2.1. Let 𝑉 be a 𝐾-vector space. The dual of 𝑉 is the 𝐾-vector
space 𝑉 * := Hom𝐾(𝑉,𝐾) of 𝐾-linear maps 𝑉 → 𝐾. This is a 𝐾-vector space
with respect to pointwise addition and scalar multiplication of maps. A linear map
𝑓 : 𝑉 →𝑊 induces a linear map

𝑓* : 𝑊 * → 𝑉 *

𝜙 ↦→ 𝜙 ∘ 𝑓 . (2.14)

So, we turn a function on 𝑊 to a function on 𝑉 by first applying the map 𝜙 to
get from 𝑉 to 𝑊 . Such a construction is called a pullback of functions and this
naturally reverses directions as you can see. The maps 𝑉 ↦→ 𝑉 * and 𝑓 ↦→ 𝑓* define
a contravariant functor (−)* : 𝐾-Vec→ 𝐾-Vec.

Example 2.2.2. In a way similar as above, consider a topological space 𝑋
and let 𝐶(𝑋) be the ring of real valued continuous functions 𝑋 → R. This is a
ring with respect to pointwise addition and multiplication. We thus have a map
𝐶 : Top→ Ring on objects. If 𝑓 : 𝑋 → 𝑌 is a continuous map of topological spaces,
then you can check that pullback of functions from 𝑌 to 𝑋, i.e. the map 𝜙 ↦→ 𝜙∘𝑓 ,
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defines a ring morphism 𝐶(𝑓) : 𝐶(𝑌 ) → 𝐶(𝑋). In total, we get a contravariant
functor 𝐶 : Top→ Ring.

Example 2.2.3. Recall the Hom-functor from Example 2.1.6. For an object 𝑌
in a locally small category 𝒞 we can also consider the contravariant Hom-functor

Hom𝒞(−, 𝑌 ) : 𝒞 → Set , (2.15)

which maps an object 𝑋 ∈ 𝒞 to Hom𝒞(𝑋,𝑌 ) and which maps a morphism 𝑓 : 𝑋 →
𝑍 in 𝒞 to the set map

Hom𝒞(𝑓, 𝑌 ) : Hom𝒞(𝑍, 𝑌 ) → Hom𝒞(𝑋,𝑌 )
𝑔 ↦→ 𝑔 ∘ 𝑓 . (2.16)

It would be annoying if we would have to consider covariant and contravariant
functors separately. There’s a formal trick that shows that any general fact about
covariant functors holds similarly for contravariant functors as well. Namely, given
a category 𝒞 we formally define a new category 𝒞op, called the opposite category
of 𝒞, as follows: the objects, morphisms, and composition are the same as for 𝒞 but
we exchange source and target functions, i.e.

𝑠op := 𝑡 and 𝑡op := 𝑠 . (2.17)

We thus have
Hom𝒞op(𝑌,𝑋) = Hom𝒞(𝑋,𝑌 ) . (2.18)

Note that the above relation is only formal—we do not invert any morphisms. You
can easily convince yourself that 𝒞op is a category and that (𝒞op)op = 𝒞. The impor-
tant (but obvious) upshot is now that a contravariant functor 𝒞 → 𝒞′ is precisely
the same as a covariant functor 𝒞op → 𝒞′ or 𝒞 → 𝒞′op. In general discussions about
functors, we will thus restrict to covariant functors, and then you can find the anal-
ogous concepts and results for contravariant functors easily yourself.

The opposite category exposes a fundamental property in category theory,
namely that many concepts have an opposite existence. For example, when we
discussed monomorphisms and epimorphisms in Section 1.3, did you notice that
this is basically the same concept—just opposite? A monomorphism in 𝒞 is an epi-
morphism when considered in 𝒞op and vice versa. In the terminology of concepts,
the opposite of a certain concept often carries the prefix co. For example, a mor-
phism has a domain and a codomain (the codomain is the domain in the opposite
category). We could call an epimorphism a co-monomorphism or call a monomor-
phism a co-epimorphism but it is more convenient to use the two separate terms. A
contravariant functor is sometimes called a co-functor. You know what a kernel of a
morphism of vector spaces is and maybe you have heard of cokernels as well—more
about this later. I think you got the idea.

2.3. The category of categories

We said that categories are also mathematical structures and this led us to
think about morphisms between categories (the functors). But you already know
that when you have a mathematical structure and a notion of morphisms between
them, you usually get a category. So, is there a category of categories? Of course!
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What we need to do is to define a composition of functors—and this is obvious: if
𝐹 : 𝒞 → 𝒞′ and 𝐺 : 𝒞′ → 𝒞′′ are two functors, their composition is the functor

𝐺 ∘ 𝐹 : 𝒞 → 𝒞′′ (2.19)

with
(𝐺 ∘ 𝐹 )0 = 𝐺0 ∘ 𝐹0 and (𝐺 ∘ 𝐹 )1 = 𝐺1 ∘ 𝐹1 , (2.20)

i.e. the maps on objects and on morphisms are simply the composition of those
of 𝐹 and 𝐺. And now I leave it up to you to check that the composition satisfies
all the properties you need for a category, so you get a category Cat of categories.
As it will show up many times, I note that the identity for the composition is the
identity functor

id𝒞 : 𝒞 → 𝒞 (2.21)

with id𝒞(𝑋) = 𝑋 for all 𝑋 ∈ 𝒞 and id𝒞(𝑓) = 𝑓 for all 𝑓 ∈ Hom𝒞 .

If you are careful, you may have noticed that in the definition of Cat we ran
again into set-theoretic issues as discussed in Section 1.4. Namely, given any class
𝒞, we can upgrade it to a category simply by formally adding identity morphisms
and taking the trivial composition. Hence, the collection of all categories contains
all classes—and now you know that this is not a class but a bigger thing we called
conglomerate. Since we agreed that the correct way to state the definition of a
category is to replace “collection” by “class”, our Cat is unfortunately not a category
in this sense—it’s too big. The usual way to deal with this issue is to consider only
small categories instead of all categories. The collection of small categories forms a
class (think about it), so you get a well-defined honest category of small categories.
I call this approach size restriction—and this is what we’ll do here.

Somehow this seems unsatisfactory because we have a working concept of gen-
eral (non-small) categories and functors between them. Remember that sets, classes,
and conglomerates are just different levels in a type hierarchy. Let’s assign them
numbers instead of fancy names: size-0 stands for sets, size-1 for classes, size-2 for
conglomerates, and now you can continue this. We can base our notion of “collec-
tion” in the formal definition of a category on any of these sizes. We then have a
size-1 category Cat0 of size-0 categories (this is the category of small categories),
a size-2 category Cat1 of size-1 categories, etc. We can now consider a size-(𝑛+ 1)
category Quiv𝑛 of size-𝑛 quivers and get a functor Cat𝑛 → Quiv𝑛 associating to a
category its underlying quiver (think about it). So, overall, size restriction is not
really restrictive when you carefully attach and consider sizes everywhere. In prac-
tice, no one does this because it’s just annoying.

The category of categories point of view is very helpful. For example, you
immediately know what an isomorphism of categories should be: it is a functor
𝐹 : 𝒞 → 𝒞′ such that there is a functor 𝐺 : 𝒞′ → 𝒞 with 𝐺∘𝐹 = id𝒞 and 𝐹 ∘𝐺 = id𝒞′ .

Example 2.3.1. Remember the category Rep𝐾(𝐺) of 𝐾-linear representations
of a group 𝐺. We will show that this category is naturally isomorphic to a category
of modules over a certain ring. Namely, let 𝐾𝐺 be the 𝐾-vector space with a basis
(𝛿𝑔)𝑔∈𝐺 indexed by the elements of 𝐺. We turn this into a ring by defining

𝛿𝑔 · 𝛿ℎ := 𝛿𝑔ℎ , (2.22)
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and then extend linearly to general elements
∑︀
𝑔 𝑎𝑔𝛿𝑔 of 𝐾𝐺. This is the group

ring of 𝐺 over 𝐾. Let 𝜌 : 𝐺 → GL(𝑉 ) be a representation of 𝐺. We define a
𝐾𝐺-module structure on 𝑉 via 𝛿𝑔𝑣 := 𝜌(𝑔)(𝑣). If 𝑓 : 𝑉 → 𝑉 ′ is a morphism of
representations, then it is also a 𝐾𝐺-module morphism. This defines a functor
Rep𝐾(𝐺)→ 𝐾𝐺-Mod. Conversely, a𝐾𝐺-module 𝑉 defines a representation 𝜌 : 𝐺→
GL(𝑉 ) via 𝜌(𝑔)(𝑣) := 𝛿𝑔𝑣. If 𝑉 → 𝑉 ′ is a 𝐾𝐺-module morphism, it is also a
morphism of the associated representations. This defines a functor 𝐾𝐺-Mod →
Rep𝐾(𝐺). It is evident that the two functors are inverse to each other, so the
categories Rep𝐾(𝐺) and 𝐾𝐺-Mod are isomorphic. This is a very helpful fact since
now we can apply general results for modules over rings to representations. Because
the isomorphism is so natural and obvious, we won’t even mention it explicitly from
now on any more: representations and 𝐾𝐺-modules are the same thing.

2.4. Equivalence of categories and morphisms of functors

You may be surprised when I tell you that the notion of isomorphism of cate-
gories is actually not the right thing to look at—it is too strong and rarely occurs.
The problem is the equal sign in 𝐺∘𝐹 = id𝒞 and 𝐹 ∘𝐺 = id𝒞′ . In this course you will
slowly start to learn that when passing from set-theoretic concepts to categorical
concepts, equal signs should better become something up to isomorphism.1 Let’s
look at an example that makes this clear.

Example 2.4.1. Let’s consider the category 𝐾-vec of finite-dimensional vector
spaces over 𝐾. You know that after choosing bases, any vector space is isomorphic
to some 𝐾𝑛 and any linear map can be encoded by a matrix with respect to the
chosen bases. Lets define a category 𝐾-mat as follows: the objects are the natural
numbers N, the morphisms 𝑛 → 𝑚 are the (𝑚 × 𝑛)-matrices over 𝐾, and the
composition is matrix multiplication. Basically, the category 𝐾-mat is the same as
the category 𝐾-vec—but only up to isomorphism of objects. Let’s look at this more
closely. We surely have a functor

𝐹 : 𝐾-mat→ 𝐾-vec (2.23)

mapping 𝑛 to 𝐾𝑛 and mapping a morphism 𝑛 → 𝑚, i.e. an (𝑚 × 𝑛)-matrix, to
the corresponding linear map 𝐾𝑛 → 𝐾𝑚 in the standard basis. But this functor is
not surjective since we only reach the vector spaces 𝐾𝑛 and not all its isomorphic
friends. Nonetheless, we can construct a functor

𝐺 : 𝐾-vec→ 𝐾-mat (2.24)

in the opposite direction as follows:
(1) we map 𝑉 ∈ 𝐾-vec to dim𝐾(𝑉 );
(2) using the axiom of choice on the class 𝐾-vec we choose for each 𝑉 ∈ 𝐾-vec

a basis and then map a morphism 𝑓 : 𝑉 →𝑊 to the matrix in the chosen
basis.

We have 𝐹𝐺(𝑉 ) = 𝐾𝑛 with 𝑛 = dim𝐾(𝑉 ). This is not necessarily equal to 𝑉 , i.e.
𝐹𝐺 ̸= id, so 𝐺 is not an inverse to 𝐹 (it can’t be of course). But from our choice

1I highly recommend the Quanta Magazine article “With Category Theory, Mathe-
matics Escapes From Equality” at https://www.quantamagazine.org/with-category-theory-
mathematics-escapes-from-equality-20191010/.

https://www.quantamagazine.org/with-category-theory-mathematics-escapes-from-equality-20191010/
https://www.quantamagazine.org/with-category-theory-mathematics-escapes-from-equality-20191010/
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of bases we at least get an isomorphism

𝜀𝑉 : 𝐹𝐺(𝑉 ) = 𝐾𝑛 ≃→ 𝑉 = id(𝑉 ) . (2.25)

These isomorphisms have the following naturality property: if 𝑓 : 𝑉 → 𝑊 is a
morphism in 𝐾-vec, then the diagram

𝐹𝐺(𝑉 ) id(𝑉 )

𝐹𝐺(𝑊 ) id(𝑊 )

𝐹𝐺(𝑓)

𝜀𝑉

id(𝑓)

𝜀𝑊

(2.26)

commutes. Hence, even though 𝐹𝐺 is not equal to the identity functor, there is a
way to naturally transform 𝐹𝐺 to the identity functor.

This should be motivation enough to introduce the following concepts.

Definition 2.4.2. Let 𝐹, 𝐹 ′ : 𝒞 → 𝒞′ be two functors. A natural transfor-
mation (or morphism) from 𝐹 to 𝐹 ′ is a family

𝜂 := {𝜂𝑋 : 𝐹 (𝑋)→ 𝐹 ′(𝑋)}𝑋∈𝒞 (2.27)

of morphisms in 𝒞′ which is natural, i.e. for each morphism 𝑓 : 𝑋 → 𝑌 in 𝒞 the
diagram

𝑋 𝐹 (𝑋) 𝐹 ′(𝑋)

𝑌 𝐹 (𝑌 ) 𝐹 ′(𝑌 )

𝑓

𝜂𝑋

𝐹 (𝑓) 𝐹 ′(𝑓)

𝜂𝑌

(2.28)

commutes.

There’s an obvious way to compose two morphisms 𝜂 : 𝐹 → 𝐹 ′ and 𝜂′ : 𝐹 ′ → 𝐹 ′′

to a morphism 𝜂′ ∘ 𝜂 : 𝐹 → 𝐹 ′′, namely via

(𝜂′ ∘ 𝜂)𝑋 := 𝜂′𝑋 ∘ 𝜂𝑋 : 𝐹 (𝑋)→ 𝐹 ′′(𝑋) (2.29)

Moreover, on each functor 𝐹 : 𝒞 → 𝒞′ we have an identity id𝐹 : 𝐹 → 𝐹 defined by

(id𝐹 )𝑋 = id𝐹 (𝑋) . (2.30)

We can thus define a category Fun(𝒞, 𝒞′), called functor category, whose objects
are the functors 𝒞 → 𝒞′, the morphisms are the morphisms of functors, and the
composition is the composition just defined. From this point of view we immediately
get a notion of isomorphism of functors 𝐹, 𝐹 ′ : 𝒞 → 𝒞′, namely this is a morphism
𝜂 : 𝐹 → 𝐹 ′ such that there is a morphism 𝜀 : 𝐹 ′ → 𝐹 with

𝜀 ∘ 𝜂 = id𝐹 and 𝜂 ∘ 𝜀 = id𝐹 ′ . (2.31)

Exercise 2.4.3. Show that a morphism 𝜂 : 𝐹 → 𝐹 ′ of functors 𝒞 → 𝒞′ is an
isomorphism if and only if 𝜂𝑋 is an isomorphism for all 𝑋 ∈ 𝒞.

Now, we come to the key definition which is motivated by Example 2.4.1.

Definition 2.4.4. An equivalence of categories 𝒞 and 𝒞′ consists of functors
𝐹 : 𝒞 → 𝒞′ and 𝐺 : 𝒞′ → 𝒞 and isomorphisms 𝜀 : 𝐹𝐺→ id𝒞′ and 𝜂 : id𝒞 → 𝐺𝐹 .
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People are lazy and usually don’t specify all the data of an equivalence. We say
that 𝒞 and 𝒞′ are equivalent if there is an equivalence between them. We say that
𝐹 : 𝒞 → 𝒞′ is an equivalence if it can be upgraded to an equivalence. A functor
𝐺 : 𝒞′ → 𝒞 such that the pair (𝐹,𝐺) can be upgraded to an equivalence is called a
weak inverse of 𝐹 .

Example 2.4.5. An isomorphism 𝐹 : 𝒞 → 𝒞′ of categories is obviously also an
equivalence—more precisely, the datum (𝐹, 𝐹−1, idid𝒞 , idid𝒞′ ) is an equivalence.

Example 2.4.6. The datum (𝐹,𝐺, 𝜀) constructed in Example 2.4.1 can be
upgraded to an equivalence between 𝐾-mat and 𝐾-vec. The only missing piece of
information is an isomorphism 𝜂 : id→ 𝐺𝐹 . We have 𝐺𝐹 (𝑛) = 𝑛 already, i.e. 𝐺𝐹 is
the identity on objects. A morphism 𝑛→ 𝑚 in𝐾-Mat is a matrix𝑀 ∈ Mat𝑚×𝑛(𝐾).
Associated to this is the linear map 𝐹 (𝑀) : 𝐾𝑛 → 𝐾𝑚 in the standard bases. But
now 𝐺𝐹 (𝑀) is not necessarily equal to 𝑀 because in our choice of bases on vector
spaces we did not require to choose the standard basis on 𝐾𝑛. Of course we can
require this particular choice and get an appropriate 𝐺 with 𝐺𝐹 (𝑀) = 𝑀 . Then
we have id = 𝐺𝐹 also on morphisms, so 𝜂 : id→ 𝐺𝐹 will be the identity morphism.

Note that in contrast to an actual inverse, a weak inverse of an equivalence is
not unique, e.g. in Example 2.4.6 you get a weak inverse for any choice of bases.
But:

Lemma 2.4.7. A weak inverse of an equivalence is unique up to isomorphism.

Proof. Let 𝐹 : 𝒞 → 𝒞′ be an equivalence and let 𝐺,𝐺′ : 𝒞′ → 𝒞 be weak in-
verses. Then we have in particular isomorphisms 𝜀′ : 𝐹𝐺′ → id and 𝜂 : id → 𝐺𝐹 .
For 𝑋 ∈ 𝒞 we get an isomorphism 𝜀′𝑋 : 𝐹𝐺′(𝑋) → 𝑋. Since functors preserve iso-
morphisms, applying 𝐺 yields an isomorphism 𝐺(𝜀′𝑋) : 𝐺𝐹𝐺′(𝑋)→ 𝐺(𝑋). On the
other hand, we have an isomorphism 𝜂𝐺′(𝑋) : 𝐺′(𝑋) → 𝐺𝐹𝐺′(𝑋). The composi-
tion of the two isomorphisms gives an isomorphism 𝐺′(𝑋) → 𝐺(𝑋). I leave it to
you to check that this family of isomorphisms is natural and thus an isomorphism
𝐺′ → 𝐺. �

There’s a more convenient way to prove that a functor is an equivalence which
is apparent also in Example 2.4.1.

Definition 2.4.8. A functor 𝐹 : 𝒞 → 𝒞′ is called:
∙ faithful if 𝐹𝑋,𝑌 is injective for all 𝑋,𝑌 ;
∙ full if 𝐹𝑋,𝑌 is surjective for all 𝑋,𝑌 ;
∙ fully faithful if it is full and faithful, i.e. 𝐹𝑋,𝑌 is bijective for all 𝑋,𝑌 ;
∙ essentially surjective if any 𝑋 ′ ∈ 𝒞′ is isomorphic to 𝐹 (𝑋) for some
𝑋 ∈ 𝒞.

Example 2.4.9. The functor 𝐹 : 𝐾-mat → 𝐾-vec from Example 2.4.1 is fully
faithful and essentially surjective.

Exercise 2.4.10. Show that a functor 𝐹 : 𝒞 → 𝒞′ is an equivalence if and only
if it is fully faithful and essentially surjective.

If in the definition of an equivalence we consider contravariant functors instead,
we speak—depending on the author—of a contravariant equivalence, or anti-
equivalence or duality.
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Example 2.4.11. Recall the contravariant functor

(−)* := Hom𝐾(−,𝐾) : 𝐾-vec→ 𝐾-vec (2.32)

from Example 2.2.1. This is a duality with a weak inverse being the functor itself.
Namely, for any vector space 𝑉 there is a canonical isomorphism

𝜀𝑉 : 𝑉 → 𝑉 ** (2.33)

given by mapping 𝑣 ∈ 𝑉 to the linear map 𝜀𝑉 (𝑣) ∈ 𝑉 ** = Hom𝐾(𝑉 *,𝐾) which
maps 𝑓 ∈ 𝑉 * to 𝑓(𝑣). This yields an isomorphism id→ (−)* ∘ (−)*. You can take
its inverse (−)* ∘ (−)* → id to get all the data of a duality.

Note that if 𝒞 is a full subcategory of 𝒞′, then we have a natural inclusion
functor 𝒞 → 𝒞′, and this is fully faithful. Conversely, from the characterization of
an equivalence in Exercise 2.4.10, it is clear that a fully faithful functor 𝐹 : 𝒞 → 𝒞′
induces an equivalence between 𝒞 and its full image, which is the full subcategory
of 𝒞′ formed by the objects 𝐹 (𝑋) for 𝑋 ∈ 𝒞. A fully faithful functor is therefore
also called an embedding.

Example 2.4.12. Let 𝒞 be a locally small category. Recall from Example 2.1.6
that for every 𝑋 ∈ 𝒞 we have the Hom-functor Hom𝒞(𝑋,−) : 𝒞 → Set. Convince
yourself that mapping 𝑋 to Hom𝒞(𝑋,−) can be made into a functor

ℎ− : 𝒞 → Fun(𝒞,Set) . (2.34)

The Yoneda lemma states that this functor is an embedding. I’ll leave it up to Give more details and a
proof.you to prove this—it’s really not that difficult. We can thus identify 𝒞 with a full

subcategory of Fun(𝒞,Set). The functors in the image are also called representable
functors because they are “represented” by an object of 𝑋.

There is also a contravariant version where you consider the covariant (!) functor

ℎ− : 𝒞 → Fun(𝒞op,Set) (2.35)

that you get by mapping 𝑌 ∈ 𝒞 to the contravariant (!) functor Hom𝒞(−, 𝑌 ).

Exercise 2.4.13. Prove the Yoneda lemma.

Remark 2.4.14. It depends on the author what exactly is meant by “embed-
ding”: for some it’s a fully faithful functor (like for us), for some it’s a faithful
functor that is injective on objects, and for some it’s a fully faithful functor that
is injective on objects. I find our definition best because it fits what you get from
important embedding theorems like the Yoneda lemma or the Mitchell embedding
theorem.

Remark 2.4.15. You may first want to define the image of a functor 𝐹 : 𝒞 → 𝒞′
as the subcollection consisting of all objects 𝐹 (𝑋) for 𝑋 ∈ 𝒞 and of all morphisms
𝐹 (𝑓) for 𝑓 ∈ Hom𝒞 . But this is in general not a subcategory because the collection
of morphisms you get is not necessarily closed under composition. One thus defines
the image of 𝐹 to be the smallest subcategory of 𝒞′ containing the 𝐹 (𝑋) and 𝐹 (𝑓).
The full image is defined as the full subcategory containing all the 𝐹 (𝑋). If 𝐹 is
full, then the image is equal to the full image.

Example 2.4.16. A category 𝒞 is called skeletal if each object has a singleton
isomorphism class, i.e. for each 𝑋 ∈ 𝒞 the only object isomorphic to 𝑋 is 𝑋 itself.
A skeleton of a category 𝒞′ is a skeletal full subcategory 𝒞 of 𝒞′. By construction,
the inclusion functor 𝒞 → 𝒞′ is fully faithful and essentially surjective, hence it is an
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equivalence, i.e. 𝒞′ is equivalent to any skeleton. A skeleton always exists: you can
get one by choosing (using the axiom of choice) a fixed representative from each
isomorphism class of objects. A skeleton of Set is the full subcategory of cardinal
numbers. Similarly, a skeleton of 𝐾-Vec is the full subcategory formed by the 𝐾𝛼

for 𝛼 a cardinal number.

Exercise 2.4.17. Show that two categories are equivalent if and only if they
have isomorphic skeleta.

2.5. Adjoint functors

There’s a weaker concept of equivalence of categories which arises basically
everywhere in mathematics: adjunctions. This concept was introduced by Daniel
Kan in 1958. Again, we start with an example.

Example 2.5.1. Consider the forget functor 𝐾-Vec → Set and let’s denote
it by 𝐺 this time (think of “forGet”). This functor is not an equivalence since,
e.g., it is not full (clearly); also, it is not essentially surjective (e.g. ∅ is not in the
essential image, or if 𝐾 = Q then no finite set with more than two elements is
in the essential image, etc.). Nonetheless we have constructed in Example 2.1.3 a
functor 𝐹 : Set → 𝐾-Vec in the opposite direction mapping a set 𝑋 to the vector
space 𝐾(𝑋) with basis indexed by 𝑋 and mapping a map 𝜙 : 𝑋 → 𝑌 of sets to the
linear map 𝑓 : 𝐾(𝑋) → 𝐾(𝑌 ) which maps the standard basis vector 𝑒𝑥 to 𝑒𝜙(𝑥).

Of course, 𝐹 cannot be a weak inverse of 𝐺 as there is none. But still, there’s
a nice relation between 𝐹 and 𝐺, and this is as follows: because 𝐾(𝑋) has basis
{𝑒𝑥}𝑥∈𝑋 it follows that giving a linear map 𝐾(𝑋) → 𝑉 out of 𝐾(𝑋) amounts
precisely to giving a map 𝑋 → 𝐺(𝑉 ) of sets. Namely, any map 𝜙 : 𝑋 → 𝐺(𝑉 )
induces a linear map 𝑓 : 𝐾(𝑋) → 𝑉 by mapping 𝑒𝑥 to 𝑒𝜙(𝑥), and conversely if
𝑓 : 𝐾(𝑋) → 𝑉 is a linear map we get a map 𝜙 : 𝑋 → 𝐺(𝑉 ) sending 𝑥 to 𝑓(𝑒𝑥).
Hence, for any set 𝑋 and any vector space 𝑉 we have a canonical bijection

Hom𝐾-Vec(𝐹 (𝑋), 𝑉 ) ≃ HomSet(𝑋,𝐺(𝑉 ))
𝑓 ↔ 𝜙

(2.36)

These bijections are natural in the arguments 𝑋 and 𝑉 , i.e. if 𝜙 : 𝑋 → 𝑌 is a map
of sets and 𝑓 : 𝑉 →𝑊 is a linear map, then the diagram

Hom𝐾-Vec(𝐹 (𝑌 ), 𝑉 ) HomSet(𝑌,𝐺(𝑉 ))

Hom𝐾-Vec(𝐹 (𝑋),𝑊 ) HomSet(𝑋,𝐺(𝑊 ))

≃

𝑔 ↦→𝑓∘𝑔∘𝐹 (𝜙) 𝜓 ↦→𝐺(𝑓)∘𝜓∘𝜙

≃

(2.37)

commutes.

There’s a more efficient way to state (2.36) and (2.37).

Definition 2.5.2. Given categories 𝒞1 and 𝒞2, we define their product 𝒞1×𝒞2
to be the category with:

∙ objects being pairs (𝑋1, 𝑋2) of objects 𝑋𝑖 ∈ 𝒞𝑖;
∙ morphisms from (𝑋1, 𝑋2) to (𝑋 ′

1, 𝑋
′
2) being pairs (𝑓1, 𝑓2) of morphisms

𝑓𝑖 ∈ Hom𝒞𝑖(𝑋𝑖, 𝑋
′
𝑖);

∙ composition being component-wise, i.e. (𝑓 ′1, 𝑓
′
2)∘(𝑓1, 𝑓2) = (𝑓 ′1∘𝑓1, 𝑓 ′2∘𝑓1);

∙ identity being id(𝑋1,𝑋2) = (id𝑋1
, id𝑋2

).



2.5. ADJOINT FUNCTORS 23

A functor 𝐹 : 𝒞1 × 𝒞2 → 𝒟 is also called a bifunctor from 𝒞1 and 𝒞2 to 𝒟.

Now, given a category 𝒞, you can easily convince yourself that

Hom𝒞(−,−) : 𝒞op × 𝒞 → Set (2.38)

is a functor and that we can restate properties (2.36) and (2.37) by saying that
there is an isomorphism of functors

Hom𝐾-Vec(𝐹 (−),−) ≃ HomSet(−, 𝐺(−)) . (2.39)

This should be motivation enough for the following definition.

Definition 2.5.3. An adjunction between categories 𝒞 and 𝒞′ consists of a
pair of functors

𝒞 𝒞′
𝐹

𝐺

(2.40)

together with an isomorphism

Φ: Hom𝒞′(𝐹 (−),−)
≃→ Hom𝒞(−, 𝐺(−)) . (2.41)

A pair (𝐹,𝐺) of functors is called an adjoint pair if it can be upgraded to an
adjunction. A right adjoint to a functor 𝐹 is a functor 𝐺 such that (𝐹,𝐺) is an
adjoint pair; and a left adjoint to a functor 𝐺 is a functor 𝐹 such that (𝐹,𝐺) is
an adjoint pair.

The bijection (2.41) really just says that for objects 𝑋 ∈ 𝒞 and 𝑋 ′ ∈ 𝒞′ the
morphisms 𝐹 (𝑋) → 𝑋 ′ are in bijection with morphisms 𝑋 → 𝐺(𝑋 ′), and these
bijections are natural. This can become very effective in practice when you have
good knowledge about morphisms in one of the categories.

Example 2.5.4. The functor 𝐹 : Set → 𝐾-Vec from Example 2.5.1 is a left
adjoint to the forget functor 𝐺 : 𝐾-Vec→ Set.

There’s a more general concept behind Example 2.5.4. Consider a category 𝒞
with a faithful functor 𝐺 : 𝒞 → Set. Such categories are called concrete because
you can think of 𝐺 as giving an underlying set, resp. set map, for the objects of 𝒞,
resp. the morphisms in 𝒞. All the examples in Table 1.1 are concrete. If 𝐺 has a left
adjoint 𝐹 : Set→ 𝒞 this means that for any set 𝑋 we can construct an object 𝐹 (𝑋)
such that morphisms 𝐹 (𝑋) → 𝑉 in 𝒞 are in bijection with set maps 𝑋 → 𝐺(𝑉 ),
i.e. morphisms out of 𝐹 (𝑋) are completely described by set maps out of 𝑋. One
therefore says that 𝐹 (𝑋) is a free object on the set 𝑋. Such a construction exists
in many examples, see Table 2.1.

Exercise 2.5.5. Spell out the left adjoint to the forget functor to Set in the
examples in Table 2.1 and prove that it is indeed a left adjoint.

Exercise 2.5.6. Find a left adjoint 𝐹 to the functor𝐺 : Cat→ Quiv associating
to a category its underlying quiver. For a quiver𝑄 one calls 𝐹 (𝑄) the free category
on 𝑄.

The free constructions (left adjoint to a forget functor) are all nice and stuff
but are there any other examples of adjunctions? Yes, and if you start looking for
them you’ll get flooded with adjunctions! I’ll just give a few more examples here.
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Category Free object
Mon free monoid 𝑋*

Grp free group ⟨𝑋⟩
Ab free abelian group Z(𝑋)

𝐾-Vec vector space 𝐾(𝑋)

Ring tensor algebra Z⟨𝑋⟩
CRing polynomial ring Z[𝑋]
𝑅-Mod free module 𝑅(𝑋)

𝑅-Alg tensor algebra 𝑅⟨𝑋⟩
Top discrete topology on 𝑋

Table 2.1. Free objects (giving a left adjoint to the forget functor).

Example 2.5.7. We have an inclusion functor 𝑖 : Ab→ Grp from the category
of abelian groups into the category of groups. This has a left adjoint Grp → Ab,
namely abelianization. To a group 𝐺 you map the abelian group

𝐺ab := 𝐺/[𝐺,𝐺] , (2.42)

where [𝐺,𝐺] is the subgroup of 𝐺 generated by commutators, i.e. elements of the
form [𝑔, ℎ] := 𝑔ℎ𝑔−1ℎ−1. For obvious reasons, [𝐺,𝐺] is called the commutator
subgroup of 𝐺. If 𝑓 : 𝐺→ 𝐺′ is a group morphism, then 𝑓([𝐺,𝐺]) ⊆ [𝐺′, 𝐺′], so 𝑓
induces a morphism 𝐺ab → (𝐺′)ab. This defines a functor (−)ab : Grp→ Ab.

Now, if 𝐺 is a group and 𝐴 is an abelian group, then a group morphism
𝑓 : 𝐺 → 𝐴 always has the commutator subgroup of 𝐺 in its kernel, hence it in-
duces a morphism 𝐺ab → 𝐴, and any such morphism arises in this way. This
correspondence is natural, hence

HomAb((−)ab,−) ≃ HomGrp(−, 𝑖(−)) , (2.43)

i.e. abelianization is left adjoint to the inclusion functor.

Example 2.5.8. We have a forget functor 𝑖 : Ab → CMon from the category
of abelian groups into the category of commutative monoids. We’ll construct a left
adjoint to this. To this end, we need a way to upgrade a commutative monoid
(𝑀,+) to an abelian group. The idea is to formally add negatives—like how you
get from N to Z. For every element 𝑚+ ∈ 𝑀 you want a formal negative 𝑚− so
that 𝑚+ + 𝑚− = 0. We will thus have to deal with two kinds of elements: the
positives and the negatives. Of course, we can “mix” them by adding, so what we
should consider is the product 𝑀 ×𝑀 with the component-wise addition, i.e.

(𝑚+,𝑚−) + (𝑛+, 𝑛−) := (𝑚+ + 𝑛+,𝑚+ + 𝑛−) . (2.44)

This is not yet the whole truth. If you have element (𝑚+,𝑚−) and you add a fixed
𝑘 ∈𝑀 to both the positive and negative parts, this should clearly still be the same
element, i.e. there should be a relation

(𝑚+ + 𝑘,𝑚− + 𝑘) ∼ (𝑚+,𝑚−) .

More generally, there should be a relation

(𝑚+,𝑚−) ∼ (𝑛+, 𝑛−) :⇔ 𝑚+ + 𝑛− + 𝑘 = 𝑛+ +𝑚− + 𝑘 for some 𝑘 ∈𝑀 . (2.45)
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This is an equivalence relation on 𝑀 ×𝑀 . The addition on 𝑀 ×𝑀 is compatible
with this relation and therefore descends to an addition on the quotient

𝐺(𝑀) := (𝑀 ×𝑀)/ ∼ , (2.46)

making it a commutative monoid. We denote the equivalence class of (𝑚+,𝑚−) in
𝐺(𝑀) by [(𝑚+,𝑚−)]. The commutative monoid 𝐺(𝑀) is in fact a group since

[(𝑚+,𝑚−)] + [(𝑚−,𝑚+)] = [(𝑚+ +𝑚−,𝑚+ +𝑚−)] = [(0, 0)] , (2.47)

i.e.
− [(𝑚+,𝑚−)] = [(𝑚−,𝑚+] . (2.48)

This group is called the Grothendieck group of 𝑀 . We have a canonical map

𝑗 : 𝑀 → 𝐺(𝑀) , 𝑚 ↦→ [(𝑚, 0)] . (2.49)

Note that

𝑗(𝑚) = 𝑗(𝑛)⇔ [(𝑚, 0)] = [(𝑛, 0)]⇔ 𝑚+ 𝑘 = 𝑛+ 𝑘 for some k , (2.50)

and this implies 𝑚 = 𝑛 only if 𝑀 is cancellative (which means precisely that you
can conclude 𝑚 = 𝑛 here). Hence, 𝑗 is injective, and so 𝑀 embeds into 𝐺(𝑀), if
and only if 𝑀 is cancellative.

Anyways, taking the Grothendieck group yields a functor

𝐺(−) : CMon→ Ab (2.51)

when we map a monoid morphism 𝑓 : 𝑀 →𝑀 ′ to the group morphism

𝐺(𝑀)
𝐺(𝑓)→ 𝐺(𝑀 ′)

[(𝑚+,𝑚−)] ↦→ [𝑓(𝑚+), 𝑓(𝑚−)] .
(2.52)

It is easy to prove that 𝐺 : CMon → Ab is a left adjoint to the forget functor
𝑖 : Ab→ CMon. I’ll leave the final bit of work to you in the following exercise.

Exercise 2.5.9. Prove that the Grothendieck group 𝐺 : CMon → Ab is a left
adjoint to the forget functor 𝑖 : Ab→ CMon.

Example 2.5.10. A functor can have both a left adjoint and a right adjoint.
Consider the forget functor 𝐺 : Top → Set. As we know from Table 2.1, 𝐺 has a
left adjoint mapping a set 𝑋 to 𝑋 equipped with the discrete topology (i.e. every
subset of 𝑋 is open). But 𝐺 also has a right adjoint mapping 𝑋 to 𝑋 with the
trivial topology (only ∅ and 𝑋 are open).

Let’s get back to general theory. I started this section by saying that there’s a
weaker concept of equivalence—and by that I meant of course adjunctions. But why
should they generalize equivalences? Equivalences are about isomorphisms 𝜀 : 𝐹𝐺→
id and 𝜂 : id→ 𝐺𝐹 , whereas adjunctions are about isomorphisms

Φ: Hom𝒞′(𝐹 (−),−)
≃→ Hom𝒞(−, 𝐺(−)) . (2.53)

Where’s the 𝜀 and 𝜂 in an adjunction? We get them as follows. Suppose that
(𝐹,𝐺,Φ) is an adjunction between 𝒞 and 𝒞′. Then for an object 𝑋 ′ ∈ 𝒞′ we have
an isomorphism

Φ𝐺(𝑋′),𝑋′ : Hom𝒞′(𝐹𝐺(𝑋 ′), 𝑋 ′)→ Hom𝒞(𝐺(𝑋 ′), 𝐺(𝑋 ′)) (2.54)

and we can thus define

𝜀𝑋′ := Φ−1
𝐺(𝑋′),𝑋′(id𝐺(𝑋′)) ∈ Hom𝒞′(𝐹𝐺(𝑋 ′), 𝑋 ′) . (2.55)
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Similarly, for 𝑋 ∈ 𝒞 we have an isomorphism

Φ𝑋,𝐹 (𝑋) : Hom𝒞′(𝐹 (𝑋), 𝐹 (𝑋))→ Hom𝒞(𝑋,𝐺𝐹 (𝑋)) (2.56)

and we can thus define

𝜂𝑋 := Φ𝑋,𝐹 (𝑋)(id𝐹 (𝑋)) ∈ Hom𝒞(𝑋,𝐺𝐹 (𝑋)) . (2.57)

By naturality of Φ, the 𝜀𝑋′ and 𝜂𝑋 are natural as well, hence they define morphisms

𝜀 : 𝐹𝐺→ id and 𝜂 : id→ 𝐺𝐹 . (2.58)

These are called the counit, respectively unit, of the adjunction (𝐹,𝐺,Φ). There is
no way we can conclude from the above that these are isomorphisms—and in general
they won’t be! But they satisfy a pair of fundamental intertwining equations, called
counit-unit equations. In the proof of the following lemma it’ll be the first time
we really use the naturality property of a morphism between functors. Make sure
you understand the proof because we’ll use similar arguments many more times.

Lemma 2.5.11. The following equations hold:

id𝐹 = 𝜀𝐹 ∘ 𝐹𝜂 and id𝐺 = 𝐺𝜀 ∘ 𝜂𝐺 . (2.59)

This means that for any 𝑋 ∈ 𝒞 and 𝑋 ′ ∈ 𝒞′ the following equations hold:

id𝐹 (𝑋) = 𝜀𝐹 (𝑋) ∘ 𝐹 (𝜂𝑋) and id𝐺(𝑋′) = 𝐺(𝜀𝑋′) ∘ 𝜂𝐺(𝑋′) . (2.60)

Proof. The equations follow from the naturality of Φ. We will first show that

Φ𝑋,𝑋′(𝑓) = 𝐺(𝑓) ∘ 𝜂𝑋 (2.61)

for any 𝑓 : 𝐹 (𝑋)→ 𝑋 ′. When we then substitute

𝑋  𝐺(𝑋 ′) and 𝑓  𝜀𝑋′ : 𝐹𝐺(𝑋 ′)→ 𝑋 ′ , (2.62)

we obtain

id𝐺(𝑋′) = Φ𝐺(𝑋′),𝑋′(Φ−1
𝐺(𝑋′),𝑋′(id𝐺(𝑋′))) = Φ𝐺(𝑋′),𝑋′(𝜀𝑋′) = 𝐺(𝜀𝑋′) ∘ 𝜂𝐺(𝑋′) ,

(2.63)
which is the second equation in the claim. To prove (2.61), we use naturality of

Φ𝑋,− : Hom𝒞′(𝐹 (𝑋),−)→ Hom𝒞(𝑋,𝐺(−)) . (2.64)

Applied to 𝑓 : 𝐹 (𝑋)→ 𝑋 ′ this yields the commutativity of the following diagram,
which is exactly (2.61):

id𝐹 (𝑋) 𝜂𝑋

Hom𝒞′(𝐹 (𝑋), 𝐹 (𝑋)) Hom𝒞(𝑋,𝐺𝐹 (𝑋))

Hom𝒞′(𝐹 (𝑋), 𝑋 ′) Hom𝒞(𝑋,𝐺(𝑋 ′))

𝑓
𝐺(𝑓) ∘ 𝜂𝑋

= Φ𝑋,𝑋′(𝑓)

Φ𝑋,𝐹 (𝑋)

Hom𝒞(𝐹 (𝑋),𝑓) Hom𝒞(𝑋,𝐺(𝑓))

Φ𝑋,𝑋′

(2.65)
With a similar naturality argument, you prove that

Φ−1
𝑋,𝑋′(𝑔) = 𝜀𝑋′ ∘ 𝐹 (𝑔) (2.66)
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for any 𝑔 : 𝑋 → 𝐺(𝑋 ′), and then substituting

𝑋 ′  𝐹 (𝑋) and 𝑔  𝜂𝑋 : 𝑋 → 𝐺𝐹 (𝑋) (2.67)

yields the first equation in the claim. �

We have shown that an adjunction (𝐹,𝐺,Φ) induces a counit-unit pair (𝜀, 𝜂)
satisfying the counit-unit equations. I’ll leave it now to you to prove that if con-
versely we have a tuple (𝐹,𝐺, 𝜀, 𝜂) where 𝜀 : 𝐹𝐺 → id and 𝜂 : id → 𝐺𝐹 are mor-
phisms satifying the counit-unit equations, then this induces an adjunction (𝐹,𝐺,Φ)
with

Φ𝑋,𝑋′(𝑓) := 𝐺(𝑓) ∘ 𝜂𝑋 and Φ−1
𝑋,𝑋′(𝑔) := 𝜀𝑋′ ∘ 𝐹 (𝑔) (2.68)

Moreover, the constructions Φ (𝜀, 𝜂) and (𝜀, 𝜂) Φ are inverse to each other so
that we can equivalently define adjunctions via a counit-unit.

Exercise 2.5.12. Prove the claims in the paragraph above.

Now, that we have extracted a counit-unit pair from an adjunction, we’re in a
better position to compare this to an equivalence of categories—where counit and
unit are isomorphisms. First, let’s introduce the following concept.

Definition 2.5.13. An adjunction (𝐹,𝐺, 𝜀, 𝜂) where 𝜀 and 𝜂 are isomorphisms
is called an adjoint equivalence.

Clearly, an adjoint equivalence is an equivalence. But it is a special equivalence
since (𝜀, 𝜂) also satisfy the counit-unit equations, which were not part of the defini-
tion of a general equivalence. However, any equivalence can be “modified” into an
adjoint equivalence in the following sense.

Lemma 2.5.14. Let (𝐹,𝐺, 𝜂) be (part of) an equivalence, where 𝜂 : id → 𝐺𝐹
is an isomorphism. Then there is a unique isomorphism 𝜀 : 𝐹𝐺 → id such that
(𝐹,𝐺, 𝜀, 𝜂) is an adjoint equivalence.

Proof. Let 𝜉 : 𝐹𝐺→ id be an isomorphism such that (𝐹,𝐺, 𝜉, 𝜂) is an equiv-
alence. We’re going to modify 𝜉 to an isomorphism 𝜀 such that (𝜀, 𝜂) satisfies the
counit-unit equations. Namely, we define 𝜀 as the composition

𝐹𝐺 𝐹𝐺𝐹𝐺 𝐹𝐺 id

=:𝜀

𝐹𝐺𝜉−1 𝐹𝜂−1𝐺 𝜉 (2.69)

This means explicitly for 𝑋 ′ ∈ 𝒞′:

𝐹𝐺(𝑋 ′) 𝐹𝐺𝐹𝐺(𝑋 ′) 𝐹𝐺(𝑋 ′) 𝑋 ′

=:𝜀𝑋′

𝐹𝐺(𝜉−1

𝑋′ ) 𝐹 (𝜂−1

𝐺(𝑋′)) 𝜉𝑋′
(2.70)

By naturality, the following diagram commutes:

𝐹 (𝑋) 𝐹𝐺𝐹 (𝑋)

𝐹𝐺𝐹 (𝑋) 𝐹𝐺𝐹𝐺𝐹 (𝑋)

𝜉−1
𝐹 (𝑋)

𝐹 (𝜂𝑋) 𝐹 (𝜂𝐺𝐹 (𝑋))

𝐹𝐺(𝜉−1
𝐹 (𝑋)

)

(2.71)
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This means 𝐹𝐺(𝜉−1
𝐹 (𝑋)) ∘ 𝐹 (𝜂𝑋) = 𝐹 (𝜂𝐺𝐹 (𝑋)) ∘ 𝜉−1

𝐹 (𝑋), hence

𝜉𝐹 (𝑋) ∘ 𝐹 (𝜂−1
𝐺𝐹 (𝑋)) ∘ 𝐹𝐺(𝜉−1

𝐹 (𝑋))⏟  ⏞  
𝜀𝐹 (𝑋)

∘𝐹 (𝜂𝑋) = id𝐹 (𝑋) , (2.72)

and that’s exactly one of the counit-unit equations. As it’s Saturday 10pm, I’ll leave
it up to you to prove the other equation and show uniqueness of 𝜀. �

Recall from Lemma 2.4.7 that a weak inverse of an equivalence is unique up to
isomorphism. We have this property also for adjoints.

Lemma 2.5.15. A left (or right) adjoint of a functor is unique up to isomor-
phism.

Proof. We prove the claim for right adjoints—the proof for left adjoints works
similarly. Let 𝐹 : 𝒞 → 𝒞′ be a functor and let 𝐺,𝐺′ : 𝒞′ → 𝒞 be two right adjoints.
We then have isomorphisms

Hom𝒞′(𝐹 (−),−) ≃ Hom𝒞(−, 𝐺(−))

and
Hom𝒞′(𝐹 (−),−) ≃ Hom𝒞(−, 𝐺′(−)) .

Composition yields an isomorphism

𝜂 : Hom𝒞(−, 𝐺(−))
≃−→ Hom𝒞(−, 𝐺′(−)) .

In particular, for fixed 𝑋 ′ ∈ 𝒞′ we have an isomorphism

𝜂𝑋′ : Hom𝒞(−, 𝐺(𝑋 ′))
≃−→ Hom𝒞(−, 𝐺′(𝑋 ′)) .

Now, recall the Yoneda lemma from Example 2.4.12. This states that the functor
ℎ− : 𝒞op → Fun(𝒞,Set) mapping 𝑌 ∈ 𝒞 to Hom𝒞(−, 𝑌 ) is an embedding, so in
particular fully faithful. Since Hom𝒞(−, 𝐺(𝑋 ′)) = ℎ𝐺(𝑋′) and Hom𝒞(−, 𝐺′(𝑋 ′)) =
ℎ𝐺′(𝑋′), this means that there is a unique morphism

𝑓𝑋′ : 𝐺(𝑋 ′)→ 𝐺′(𝑋 ′)

with 𝜂𝑋′ = ℎ𝑓𝑋′ . This morphism is moreover an isomorphism by fully-faithfulness of
ℎ−. Now, you can think a bit and see that the fact that 𝜂𝑋′ is natural in 𝑋 ′ implies
that 𝑓𝑋′ is natural in 𝑋 ′ as well, hence it yields an isomorphism 𝐺→ 𝐺′. �



CHAPTER 3

Abelian categories

Recall how we arrived at the concept of categories: there are dozens of examples
of (algebraic) structures, each coming with their structure preserving maps, and
we wanted a general framework to talk about objects and morphisms. One part of
category theory is now to try to find categorical generalizations of concepts we know
in particular categories or examples. I will call this process categorization1. Recall
what we did when we looked at injective maps: we formulated this categorically
as monomorphisms and then studied this in various categories. In this way you
introduce special objects and special morphisms, and even special categories where
these objects and morphisms behave in the way you want them. The notion of
abelian categories that we are going to introduce in this chapter comes precisely
from trying to find categorization of important constructions you know from abelian
groups (or from vector spaces or modules in general) like the direct sum of abelian
groups and the kernel of a morphism. The upshot of this is that if you stumble
across a new category and can show that it has the desired properties—like being
abelian—you can use all of the general results about such categories to study this
particular category without reproving anything that follows from general features
anyways. This is maybe not yet

final philosophy. I also
don’t like the word “cate-
gorization”.

3.1. Additive categories

The first thing we want to categorize is the direct sum of abelian groups (or
vector spaces or modules). Recall that the direct sum of two abelian groups 𝐴1 and
𝐴2 is

𝐴1 ⊕𝐴2 := {(𝑎1, 𝑎2) | 𝑎𝑖 ∈ 𝐴𝑖} , (3.1)
which is again an abelian group with respect to pointwise addition. Unfortunately,
this is not a categorical definition because 𝑎𝑖 ∈ 𝐴𝑖 does not make sense in a general
category. So, let’s try to make this categorical. What’s the point of the direct sum
when you think about morphisms? It’s the following: given morphisms 𝑓𝑖 : 𝐴→ 𝐴𝑖
from a fixed abelian group 𝐴, there’s a unique morphism 𝑓 : 𝐴 → 𝐴1 ⊕ 𝐴2 such
that the diagram

𝐴 𝐴1 ⊕𝐴2

𝐴𝑖

𝑓

𝑓𝑖
p𝑖 (3.2)

commutes, where
p𝑖 : 𝐴1 ⊕𝐴2 → 𝐴 (3.3)

1I don’t think there’s official terminology. “Categoricalization” or “arrowfication” would also
work and describe the process more precisely actually but this all sounds like a nightmare.

29
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is the projection onto the 𝑖-th component. Namely, you define

𝑓(𝑎) := (𝑓1(𝑎), 𝑓2(𝑎)) . (3.4)

But the direct sum also satisfies a dual property as well: given morphisms 𝑓𝑖 : 𝐴𝑖 →
𝐴 into an abelian group 𝐴, there’s a unique morphism 𝑓 : 𝐴1 ⊕ 𝐴2 → 𝐴 such that
the diagram

𝐴1 ⊕𝐴2 𝐴

𝐴𝑖

𝑓

i𝑖
𝑓𝑖

(3.5)

commutes, where
i𝑖 : 𝐴𝑖 → 𝐴1 ⊕𝐴2 (3.6)

is the inclusion of the 𝑖-th component. Namely, you define

𝑓((𝑎1, 𝑎2)) := 𝑓1(𝑎1) + 𝑓2(𝑎2) . (3.7)

Between the projections and embeddings we have the relation

p𝑖 ∘ i𝑖 = id𝐴𝑖 , p𝑗 ∘ i𝑖 = 0 for 𝑖 ̸= 𝑗 . (3.8)

The important thing to notice is that the direct sum is not just an object
but comes together with morphisms (projection and inclusion) satisfying some spe-
cial properties. Let us first view the two properties (3.2) and (3.5) separately and
formulate them in an arbitrary category.

Definition 3.1.1. Let 𝒞 be a category and let 𝑋1, 𝑋2 ∈ 𝒞.
(1) A product of 𝑋1 and 𝑋2 is an object 𝑋1 ×𝑋2 together with morphisms

p𝑖 : 𝑋1×𝑋2 → 𝑋𝑖 satisfying the following property: given any morphisms
𝑓𝑖 : 𝑋 → 𝑋𝑖 there is a unique morphism 𝑓 : 𝑋 → 𝑋1 × 𝑋2 making the
diagram

𝑋 𝑋1 ×𝑋2

𝑋𝑖

𝑓

𝑓𝑖
p𝑖 (3.9)

commutative.
(2) A coproduct of 𝑋1 and 𝑋2 is an object 𝑋1

∐︀
𝑋2 together with mor-

phisms i𝑖 : 𝑋𝑖 → 𝑋1

∐︀
𝑋2 satisfying the following property: given any

morphisms 𝑓𝑖 : 𝑋𝑖 → 𝑋 there is a unique morphism 𝑓 : 𝑋1

∐︀
𝑋2 → 𝑋

making the diagram

𝑋1

∐︀
𝑋2 𝑋

𝑋𝑖

𝑓

i𝑖
𝑓𝑖

(3.10)

commutative.

Before we look into this more closely, let’s look at this more generally. These
definitions are always about an object together with morphisms satisfying some
particular property. Many categorizations of concepts we know from abelian groups
go exactly along these lines. Therefore, it makes sense to generalize this concept
immediately.
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Definition 3.1.2. Let 𝐹 : ℐ → 𝒞 be a functor. A cone to 𝐹 is an object 𝐶 ∈ 𝒞 It’s maybe better to use
𝐷 instead of 𝐹 here be-
cause of later context.

together with a family 𝜓 of morphisms 𝜓𝑖 : 𝐶 → 𝐹 (𝑖) for any 𝑖 ∈ ℐ such that for
every morphism 𝑓 : 𝑖→ 𝑗 in ℐ the diagram

𝐶

𝐹 (𝑖) 𝐹 (𝑗)

𝜓𝑖 𝜓𝑗

𝐹 (𝑓)

(3.11)

commutes.2 A limit (or universal cone) to 𝐹 is a cone (𝐶,𝜓) to 𝐹 such that for
any other cone (𝐶 ′, 𝜓′) to 𝐹 there is a unique morphism 𝑢 : 𝐶 ′ → 𝐶 making the
diagram

𝐶 ′

𝐶

𝐹 (𝑖) 𝐹 (𝑗)

𝑢
𝜓′

𝑖
𝜓′

𝑗

𝜓𝑖 𝜓𝑗

𝐹 (𝑓)

(3.12)

commutative for all morphisms 𝑓 : 𝑖→ 𝑗 in 𝒞.3

You should think of the functor 𝐹 : ℐ → 𝒞 as a diagram in 𝒞 of shape ℐ,
i.e. a collection of objects and morphisms in 𝒞 indexed by ℐ. Often, people forget
about the morphisms coming along with the limit but they are there and they are
important. I leave it up to you to formulate the dual concept of a co-cone and a
colimit.

Example 3.1.3. We can consider any set (even class) 𝑆 as a category whose
objects are the elements of 𝑆 and whose morphisms are only the identity morphisms.
Such categories are called discrete. Let’s consider a two-element set {1, 2}. Then
a functor 𝐹 : {1, 2} → 𝒞 is just a choice of two objects 𝑋1 := 𝐹 (1) and 𝑋2 :=
𝐹 (2) in 𝒞. Now, what is a cone to 𝐹? This is an object 𝐶 ∈ 𝒞 together with
morphisms 𝜓𝑖 : 𝐶 → 𝑋𝑖. There’s no further condition because there are no (non-
identity) morphisms in the discrete category {1, 2}. Now, 𝐶 is universal if for any
object 𝐶 ′ ∈ 𝒞 together with morphisms 𝜓′

𝑖 : 𝐶
′ → 𝑋𝑖 there is a unique morphism

𝑢 : 𝐶 ′ → 𝐶 making the diagram

𝐶 ′

𝐶

𝑋1 𝑋2

𝑢
𝜓′

𝑖
𝜓′

𝑗

𝜓𝑖 𝜓𝑗

(3.13)

commutative. Do you realize that the universal cone satisfies exactly the defining
property of the product of 𝑋1 and 𝑋2? Similarly, the coproduct is precisely the
colimit of a corresponding functor {1, 2} → 𝒞. Now, you can easily define products
and coproducts of arbitrary families of objects as well: it’s just the limit, respectively
colimit, of a diagram whose shape is a discrete category.

2Can you see why (𝐶,𝜓) is called a “cone”?
3So, another way to say is that any other cone to 𝐹 “factors through” the universal cone.
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Another upshot of the limit point of view is that it’s basically straightforward
to see that if a diagram has a limit, then it is unique up to unique isomorphism. This
tells us for example that the property of product and coproduct that we extracted
from what we know about abelian groups is indeed a characterizing property and
we’re on the right track with Definition 3.1.1.

Lemma 3.1.4. A limit (𝐶,𝜓) of a diagram 𝐹 : ℐ → 𝒞 is unique up to unique
isomorphism, i.e. if (𝐶 ′, 𝜓′) is another limit, then there is a unique isomorphism
𝑢 : 𝐶 ′ → 𝐶 making the diagram

𝐶 ′

𝐶

𝐹 (𝑖) 𝐹 (𝑗)

𝑢
𝜓′

𝑖
𝜓′

𝑗

𝜓𝑖 𝜓𝑗

𝐹 (𝑓)

(3.14)

commutative for all morphisms 𝑓 : 𝑖→ 𝑗 in 𝒞.

Proof. The idea is simply to mutually apply the universal property. Since
(𝐶,𝜓) is a universal cone and (𝐶 ′, 𝜓′) is another cone, there is a morphism 𝑢 : 𝐶 ′ →
𝐶 making the diagram

𝐶 ′

𝐶

𝐹 (𝑖) 𝐹 (𝑗)

𝑢
𝜓′

𝑖
𝜓′

𝑗

𝜓𝑖 𝜓𝑗

𝐹 (𝑓)

(3.15)

commutative. Conversely, since (𝐶 ′, 𝜓′) is a universal cone and (𝐶,𝜓) is another
cone, there is a morphism 𝑢′ : 𝐶 → 𝐶 ′ making the diagram

𝐶

𝐶 ′

𝐹 (𝑖) 𝐹 (𝑗)

𝑢′
𝜓𝑖 𝜓𝑗

𝜓′
𝑖

𝜓′
𝑗

𝐹 (𝑓)

(3.16)

commutative. When we stack the last diagram onto the previous, we obtain a
commutative diagram

𝐶

𝐶

𝐹 (𝑖) 𝐹 (𝑗)

𝑢∘𝑢′
𝜓𝑖 𝜓𝑗

𝜓𝑖 𝜓𝑗

𝐹 (𝑓)

(3.17)

Now, the universal property of 𝐶 tells us that there is a unique morphism 𝐶 → 𝐶
making this diagram commutative. The identity obviously does, so we conclude
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that 𝑢 ∘ 𝑢′ = id𝐶 . Analogously, we conclude that 𝑢′ ∘ 𝑢 = id𝐶′ . Hence, 𝑢 is an
isomorphism and the uniqueness is clear as well. �

Definition 3.1.5. One also writes lim𝐹 for the limit of 𝐹 and colim𝐹 for the
colimit (if it exists).

Now that we know that the product is just a special case of a limit and that
limits are unique, it’s time to ask the key question: does a limit actually exist? In
general, the answer is: no. For a given shape ℐ, this is really a condition on the
category 𝒞. If 𝒞 has a limit for any diagram of shape ℐ we say that 𝒞 has ℐ-limits.
If 𝒞 has ℐ-limits for any small category ℐ one says that 𝒞 is complete. Dually,
one defines cocomplete, and a category that is both complete and cocomplete is
called bicomplete. There’s an existence theorem for limits which basically says
that if the category has (arbitrary) products and moreover limits of one special
simple shape (equalizers), it’s already complete. There would be a lot to say about I should actually prove

this here.this but we won’t go down this rabbit hole of abstract nonsense and just look at a
few examples.

Example 3.1.6. The category Set is bicomplete. For example, the product is
the Cartesian product and the coproduct is the disjoint union.

Example 3.1.7. The category Ab is bicomplete. The product of a family (𝐴𝑖)𝑖∈𝐼
of abelian groups is the Cartesian product∏︁

𝑖∈𝐼
𝐴𝑖 := {(𝑎𝑖)𝑖∈𝐼 | 𝑎𝑖 ∈ 𝐴𝑖}

with component-wise addition. The coproduct on the other hand is the direct sum⨁︁
𝑖∈𝐼

𝐴𝑖 := {(𝑎𝑖)𝑖∈𝐼 | 𝑎𝑖 ∈ 𝐴𝑖, all but finitely many 𝑎𝑖 = 0} .

You see that for finite 𝐼, the product and coproduct are the same; but for infinite
𝐼 they are distinct. You have the analogous constructions in the category 𝑅-Mod
of 𝑅-modules over a ring 𝑅.

Example 3.1.8. The category Grp of groups is bicomplete. The product of a
family of groups is just the Cartesian product of the underlying sets equipped with
component-wise multiplication. The coproduct, however, is given by the so-called
free product, and this looks quite different. Let’s not discuss this here.

Example 3.1.9. Finally, a non-example. The category 𝒞 of fields (full subcat-
egory of CRing consisting of fields) does not have products—not even finite ones.
Let 𝐾 and 𝐿 be fields. A product 𝐾 × 𝐿 would need to have projection maps
𝐾 × 𝐿 → 𝐾 and 𝐾 × 𝐿 → 𝐿. But if 𝐾 and 𝐿 have different characteristic (e.g.
𝐾 = Q and 𝐿 = F2) such morphisms just cannot exist. For the exact same reason,
coproducts do not exist either.

After this detour, let’s come back to what we initially wanted to categorize: the
direct sum of two abelian groups. From the discussion it’s clear that the direct sum
is both a product and a coproduct at the same time. But that’s not all: there’s this
intertwining relation (3.8). This is still a bit of an issue since in the relation p𝑗∘i𝑖 = 0
for 𝑖 ̸= 𝑗 the 0 is the zero morphism 𝐴𝑖 → 𝐴𝑗 . In a general category there is no
zero morphism, so we first need to categorize this. Maybe, before thinking about
the zero morphism, let’s think about the zero object which should categorize the
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zero abelian group. How can we characterize this? Well, there’s a unique morphism
0→ 𝐴 into every abelian group and a unique morphism 𝐴→ 0 from every abelian
group. Maybe this is enough, so let’s define:

Definition 3.1.10. Let 𝒞 be a category.
(1) An object 𝐼 is initial if there is a unique morphism 𝐼 → 𝑋 into any 𝑋.
(2) An object 𝑇 is terminal if there is a unique morphism 𝑋 → 𝑇 for any 𝑋.
(3) A zero object is an object 0 which is both initial and terminal.

Can define this as
limit/colimit. Uniqueness
then clear. Lemma 3.1.11. If 𝒞 has an initial (resp. terminal, zero) object, then it is unique

up to unique isomorphism.

Proof. We just consider the case of initial objects, the other cases follow
analogously. Let 𝐼 ′ be another initial object. Then there is a unique morphism
𝑢 : 𝐼 ′ → 𝐼 and a unique morphism 𝑢′ : 𝐼 → 𝐼 ′. We thus get a morphism 𝑢 ∘ 𝑢′ : 𝐼 →
𝐼. But also the identity 𝐼 → 𝐼 is a morphism and since there is only one such
morphism, we must have 𝑢 ∘ 𝑢′ = id. Analogously, you prove that 𝑢′ ∘ 𝑢 = id.
Hence, 𝑢 is an isomorphism and it’s clear that this is unique. �

Example 3.1.12. In Ab the zero abelian group is the zero object. More gener-
ally, in 𝑅-Mod the zero module is a zero object.

Example 3.1.13. In Grp the trivial group 1 is a zero object.

Example 3.1.14. In Set the empty set ∅ is an initial object and a singleton set
⋆ is a terminal object. It follows that Set does not have a zero object.

Example 3.1.15. In Ring the ring of integers Z is an initial object and the zero
ring 0 is a terminal object. In particular, Ring does not have a zero object.

To categorize the direct sum we need a zero morphism, not really a zero object.
Where do we get this from? When we have a zero object 0, we get a special morphism
between any two objects 𝑋 and 𝑌 , namely

𝑋 0 𝑌

=:0𝑋𝑌

(3.18)

where the two morphisms are the unique ones we get from the fact that 0 is a
zero object. We call the resulting morphism the zero morphism from 𝑋 to 𝑌 .
There’s one little problem with this definition: a zero object is only unique up to
isomorphism and therefore the zero morphism may—in principle—depend on the
choice of the zero object. But it does not: if 0′ is another zero object then there is
a unique morphism 0→ 0′ and the resulting morphism

𝑋 → 0→ 0′ → 𝑌

must be both 0𝑋𝑌 and 0′𝑋𝑌 . In other words, there is only one morphism 𝑋 → 𝑌
factoring through a zero object, and this is the zero morphism.

Example 3.1.16. Given two abelian groups (or more generally modules) 𝐴 and
𝐵 the unique morphism 𝐴→ 0 is 𝑎 ↦→ 0 and the unique morphism 0→ 𝐵 is 0 ↦→ 0.
Hence, the zero morphism 𝐴→ 𝐵 is 𝑎 ↦→ 0. Great!

Now, we can finally categorize the direct sum of abelian groups.
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Definition 3.1.17. Let 𝒞 be a category with zero object.4 The direct sum
(or biproduct) of two objects 𝑋1 and 𝑋2 is an object 𝑋1 ⊕ 𝑋2 together with
morphisms p𝑖 : 𝑋1 ⊕𝑋2 → 𝑋𝑖 and i𝑖 : 𝑋𝑖 → 𝑋1 ⊕𝑋2 such that:

(1) 𝑋1 ⊕𝑋2 together with the p𝑖 is a product of 𝑋1 and 𝑋2;
(2) 𝑋1 ⊕𝑋2 together with the i𝑖 is a coproduct of 𝑋1 and 𝑋2;
(3) p𝑖 ∘ i𝑖 = id𝑋𝑖

and p𝑗 ∘ i𝑖 = 0𝑋𝑖𝑋𝑗
for 𝑖 ̸= 𝑗.

I leave it up to you to generalize the definition to arbitrarily many summands
and to show that the direct sum—if it exists—is unique up to unique isomorphism.

Definition 3.1.18. A category is semiadditive if it has finite direct sums.5

Example 3.1.19. The category 𝑅-Mod is semiadditive. The direct sum is pre-
cisely as in (3.1) together with the projection and inclusion. In fact, 𝑅-Mod even
has direct sums of arbitrarily many summands.

Example 3.1.20. The category Grp of groups is not semiadditive. Even though
it has a zero object by Example 3.1.13 and also products and coproducts by Ex-
ample 3.1.8, product and coproduct are distinct, so we cannot define a direct sum.

Exercise 3.1.21. Show that the empty direct sum is the zero object.

Exercise 3.1.22. Show that the direct sum is associative and commutative,
i.e. there are canonical isomorphisms

(𝑋1 ⊕𝑋2)⊕𝑋3 ≃ 𝑋1 ⊕ (𝑋2 ⊕𝑋3) , 𝑋1 ⊕𝑋2 ≃ 𝑋2 ⊕𝑋1 . (3.19)

Conclude that if 𝒞 is semiadditive and essentially small, the set [𝒞] of isomorphism
classes of 𝒞 is a commutative monoid with addition

[𝑋] + [𝑌 ] := [𝑋 ⊕ 𝑌 ] . (3.20)

What is the neutral element?

Let 𝒞 be a semiadditive category. We can use the direct sum on objects to define
a direct sum on morphisms as well. Namely, if 𝑓, 𝑔 : 𝑋 → 𝑌 are two morphisms,
then by the universal property of the direct sum 𝑋⊕𝑌 there is a unique morphism

𝑓 ⊕ 𝑔 : 𝑋 ⊕𝑋 → 𝑌 ⊕ 𝑌 (3.21)

making the diagram

𝑋 𝑌

𝑋 ⊕𝑋 𝑌 ⊕ 𝑌

𝑋 𝑌

𝑓

i1

𝑓⊕𝑔

p1

p2

𝑔

i2

(3.22)

commutative.

Example 3.1.23. In 𝑅-Mod the direct sum 𝑓⊕𝑔 of two morphisms 𝑓, 𝑔 : 𝐴→ 𝐵
is simply the map (𝑎1, 𝑎2) ↦→ (𝑓(𝑎1), 𝑔(𝑎2)), i.e. it is 𝑓 in the first component and
𝑔 in the second component.

4Such categories are sometimes also called pointed.
5For this to make sense we of course require 𝒞 to have a zero object.
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There’s a brilliant way to get from 𝑋 to 𝑋 ⊕ 𝑋 and from 𝑌 ⊕ 𝑌 back to 𝑌
that allows us to produce from the direct sum 𝑓 ⊕ 𝑔 : 𝑋 ⊕𝑋 → 𝑌 ⊕ 𝑌 an actual
sum 𝑓 + 𝑔 : 𝑋 → 𝑌 . Namely, the product property of the direct sum 𝑋 ⊕𝑋 yields
a diagonal morphism ∆𝑋 : 𝑋 → 𝑋 ⊕𝑋 making the diagram

𝑋 𝑋 ⊕𝑋

𝑋

Δ𝑋

id𝑋

p𝑖 (3.23)

commutative, and dually by the coproduct property there is a codiagonal mor-
phism ∇𝑌 : 𝑌 ⊕ 𝑌 → 𝑌 making the diagram

𝑌 ⊕ 𝑌 𝑌

𝑌

∇𝑌

i𝑖
id𝑌

(3.24)

commutative. We thus define

𝑓 + 𝑔 := ∇𝑌 ∘ (𝑓 ⊕ 𝑔) ∘∆𝑋 : 𝑋 → 𝑌 . (3.25)

Example 3.1.24. In 𝑅-Mod the diagonal morphism ∆𝐴 is the map 𝑎 ↦→ (𝑎, 𝑎)
and the codiagonal morphism ∇𝐵 is the map (𝑏, 𝑏) ↦→ 𝑏+ 𝑏. Hence, the sum 𝑓 + 𝑔
of two morphisms 𝑓, 𝑔 : 𝐴 → 𝐵 is the map 𝑎 ↦→ 𝑓(𝑎) + 𝑔(𝑎), i.e. this is simply the
pointwise addition of maps—what else would you expect?

Exercise 3.1.25. Show that the addition in (3.25) makes Hom𝒞(𝑋,𝑌 ) into
a commutative monoid with neutral element the zero morphism 0𝑋𝑌 . Moreover,
show that the addition is compatible with the composition.

Exercise 3.1.26. Show that taking the direct sum defines a bifunctor

−⊕− : 𝒞 × 𝒞 → 𝒞 . (3.26)

The addition on morphisms allows us to introduce the following matrix cal-
culus for morphisms. Consider a direct sum 𝑋 :=

⨁︀𝑚
𝑖=1𝑋𝑖. Let p𝑖 : 𝑋 → 𝑋𝑖 be

the projection and let i𝑖 : 𝑋𝑖 → 𝑋 be the inclusion. We claim that
𝑚∑︁
𝑖=1

i𝑖 ∘ p𝑖 = id𝑋 . (3.27)

Let 𝑢 be the sum. Then composition with the inclusion i𝑗 yields

𝑢 ∘ i𝑗 =

(︃
𝑚∑︁
𝑖=1

i𝑖 ∘ p𝑖

)︃
∘ i𝑗 =

𝑚∑︁
𝑖=1

i𝑖 ∘ p𝑖 ∘ i𝑗 =

𝑚∑︁
𝑖=1

i𝑖 ∘ 𝛿𝑖𝑗 id𝑋𝑗
= i𝑗 . (3.28)

Here, we have used the fact that the addition is associative and compatible with
composition (Exercise 3.1.25), together with the equation p𝑗 ∘ i𝑗 = id𝑋𝑗 from the
properties of the direct sum (Definition 3.1.17). The above equation implies 𝑢 = id𝑋
since this is the unique morphism 𝑋 → 𝑋 satisfying this equation by the coproduct
property.

Now, take another object 𝑌 :=
⨁︀𝑛

𝑗=1 𝑌𝑗 and consider a morphism 𝑓 : 𝑋 → 𝑌 .
Let q𝑗 : 𝑌 → 𝑌𝑗 be the projection and let j𝑗 : 𝑌𝑗 → 𝑌 be the inclusion. Then for
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any pair (𝑖, 𝑗) we obtain the component morphism

𝑋 𝑌

𝑋𝑖 𝑌𝑗

𝑓

q𝑗

=:𝑓𝑗𝑖

i𝑖 (3.29)

We write the component morphisms into a matrix

𝑀𝑓 := (𝑓𝑗𝑖)𝑖𝑗 . (3.30)

We first note that we can recover 𝑓 from the matrix 𝑀𝑓 because∑︁
𝑖,𝑗

j𝑗 ∘ 𝑓𝑗𝑖 ∘ p𝑖 =
∑︁
𝑖𝑗

j𝑗 ∘ (q𝑗 ∘ 𝑓 ∘ i𝑖) ∘ p𝑖 =
∑︁
𝑖𝑗

(j𝑗 ∘ q𝑗) ∘ 𝑓 ∘ (i𝑖 ∘ p𝑖)

=

⎛⎝∑︁
𝑗

j𝑗 ∘ q𝑗

⎞⎠ ∘ 𝑓 ∘(︃∑︁
𝑖

i𝑖 ∘ p𝑖

)︃
= id𝑌 ∘𝑓 ∘ id𝑋 = 𝑓 ,

where we have used the fundamental equation (3.27). The conclusion is that the
matrix of a morphism completely determines the morphism.

Exercise 3.1.27. Show that addition and composition of morphisms in 𝒞 trans-
lates into addition and multiplication of the associated matrices, i.e.

𝑀𝑓+𝑔 = 𝑀𝑓 +𝑀𝑔 and 𝑀𝑔∘𝑓 = 𝑀𝑔𝑀𝑓 . (3.31)

Recall the addition of morphisms in 𝑅-Mod from Example 3.1.24. In this case,
the addition also has negatives so that the Hom-sets are not just commutative
monoids but abelian groups—in fact they are 𝑅-modules naturally. It’ll be useful
to have a general concept of categories whose Hom-sets have a compatible module
structure.

Definition 3.1.28. Let 𝑅 be a commutative ring. An 𝑅-linear structure on
a category 𝒞 consists of an 𝑅-module structure on Hom𝒞(𝑋,𝑌 ) for any two objects
𝑋 and 𝑌 such that the composition

∘ : Hom𝒞(𝑌, 𝑍)×Hom𝒞(𝑋,𝑌 )→ Hom𝒞(𝑋,𝑍) (3.32)

is 𝑅-bilinear.6 A category is said to be 𝑅-linear if it admits an 𝑅-linear structure.7.

Definition 3.1.29. A Z-linear category is also said to be preadditive.

Clearly, an 𝑅-linear category is naturally preadditive.

Example 3.1.30. 𝑅-Mod has a natural 𝑅-linear structure given by point-wise
addition of morphisms.

Exercise 3.1.31. Show that in an 𝑅-linear category 𝒞 the set End𝒞(𝑋) of
endomorphisms of an object 𝑋 is naturally an 𝑅-algebra with respect to the com-
position as multiplication.

6We assume that 𝑅 is commutative since otherwise for the bilinearity we would need
Hom𝒞(𝑌, 𝑍) to be a right 𝑅-module and Hom𝒞(𝑋,𝑌 ) to be a left 𝑅-module, so actually the
Hom-sets would need to be 𝑅-bimodules (which they are naturally if 𝑅 is commutative). You can
do all this indeed, but we don’t need this generality here.

7When one says “Let 𝒞 be an 𝑅-linear category.” it is understood that one fixes an 𝑅-linear
structure on 𝒞.
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Example 3.1.32. The category Grp of groups is not preadditive. You can find
a neat argument on https://en.wikipedia.org/wiki/Category_of_groups.Add this argument here.

Now, here’s something that requires some thought. Suppose we have a cate-
gory 𝒞 that is semiadditive and also has a preadditive structure. Then we actually
have two additions on the Hom-sets: the one from the preadditive structure and
the one induced by semiadditivity as in (3.25). Are these two additions distinct?
Interestingly, the answer is: no, they are identical! In other words:

Lemma 3.1.33. There is at most one preadditive structure on a semiadditive
category.

Proof. Let 𝒞 be a semiadditive category. Suppose that 𝒞 has a preadditive
structure and denote by u the corresponding addition on morphisms. We want to
show that 𝑓 u 𝑔 = 𝑓 + 𝑔 for any morphisms 𝑓, 𝑔 : 𝑋 → 𝑌 , where + is the addition
(3.25) from the semiadditive structure. In the exact same way as discussed above,
we can introduce a matrix calculus with respect to u. This is because all we used
was that + is associative and compatible with the composition—and u satisfies
this as well. The associated matrices are independent of the addition because this
is not involved in their definition. By (3.25) we have

𝑓 + 𝑔 = ∇𝑌 ∘ (𝑓 ⊕ 𝑔) ∘∆𝑋 . (3.33)

Let’s look at the associated matrix 𝑀 of ∇𝑌 ∘ (𝑓 ⊕ 𝑔) ∘∆𝑋 . We have

𝑀Δ𝑋
=

(︂
id𝑋
id𝑋

)︂
, 𝑀𝑓⊕𝑔 =

(︂
𝑓 0
0 𝑔

)︂
, 𝑀∇𝑌

=
(︀
id𝑌 id𝑌

)︀
. (3.34)

Hence, using the matrix calculus with respect to u, we get

𝑀 = 𝑀∇𝑌
𝑀𝑓⊕𝑔𝑀Δ𝑋

=
(︀
id𝑌 id𝑌

)︀(︂𝑓 0
0 𝑔

)︂(︂
id𝑋
id𝑋

)︂
=
(︀
𝑓 u 𝑔

)︀
, (3.35)

i.e. 𝑓 + 𝑔 = 𝑓 u 𝑔 as claimed. �

Now, we finally come to the key definition of this section:

Definition 3.1.34. A semiadditive category which has a preadditive structure
is called additive.

Note that Lemma 3.1.33 really tells us that a semiadditive category is additive
if and only if the addition (3.25) on morphisms from the semiadditive structure has
negatives. In particular, additivity is a property of a category, not a structure.

additive

semiadditive preadditive

𝑅-linear

Figure 3.1. Properties of categories (semiadditive and additive)
and structures on categories (preadditive and 𝑅-linear) discussed
so far.

https://en.wikipedia.org/wiki/Category_of_groups
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Example 3.1.35. The category 𝑅-Mod is additive.

Our motivation for developing a general concept of additive categories was the
category of abelian groups (and more generally modules). So far, this was our only
example. This whole journey would be completely pointless if there would be no
other examples. But luckily there are plenty!

Example 3.1.36. Let 𝒞 be an additive category, e.g. 𝒞 = 𝑅-Mod. A graded
object over 𝒞 is a sequence 𝐴∙ := (𝐴𝑖)𝑖∈Z of objects 𝐴𝑖 ∈ 𝒜. A morphism of
graded objects 𝐴∙ → 𝐵∙ is a sequence 𝑓∙ := (𝑓𝑖)𝑖∈Z of morphisms 𝑓𝑖 : 𝐴𝑖 → 𝐵𝑖.
Graded objects together with morphisms of graded objects form a category Gr(𝒞).
It’s not hard to see that Gr(𝒞) is an additive category: you just define the direct sum
of objects and the sum of morphisms component-wise. What we defined should be
more precisely called Z-graded objects—you can consider gradings more generally
over an arbitrary index set. Note that we have in particular defined the notions of
graded vector spaces and graded modules.

Example 3.1.37. The following example is an enhancement of graded objects
and occurs everywhere in nature. Fix again an additive category 𝒞. A chain com-
plex over 𝒞 is a sequence 𝐴∙ := (𝐴𝑖, 𝑑𝑖)𝑖∈Z of objects 𝐴𝑖 ∈ 𝒞 and morphisms
𝐴𝑖−1

𝑑𝑖← 𝐴𝑖 called differentials with the property that the composition of two
differentials is zero:

𝐴𝑖−2 𝐴𝑖−1 𝐴𝑖 .
𝑑𝑖−1 𝑑𝑖

0

(3.36)

A morphism 𝐴∙ → 𝐵∙ of chain complexes is a sequence 𝑓∙ := (𝑓𝑖)𝑖∈Z of morphisms
𝑓𝑖 : 𝐴𝑖 → 𝐵𝑖 such that for each 𝑖 the diagram

𝐴𝑖−1 𝐴𝑖

𝐵𝑖−1 𝐵𝑖

𝑓𝑖−1

𝑑𝐴,𝑖

𝑓𝑖

𝑑𝐵,𝑖

(3.37)

commutes. Chain complexes over 𝒞 together with morphisms of chain complexes
form a category that we will denote by Ch∙(𝒞). Again, Ch∙(𝒞) is an additive category
by defining the direct sum of objects and the sum of morphisms component-wise.
There’s a dual notion of a cochain complex which goes the other way around: this
is a sequence 𝐴∙ := (𝐴𝑖, 𝑑𝑖)𝑖∈Z with 𝑑𝑖 : 𝐴𝑖 → 𝐴𝑖+1 satisfying 𝑑𝑖+1 ∘𝑑𝑖 = 0, and you
get an additive category Ch∙(𝒞). You may wonder about the strange differential-
square condition (3.36). We’ll come to this later.

Example 3.1.38. The category Fun(𝒞, 𝒞′) of functors from a category 𝒞 into an
additive category 𝒞′ is additive: the direct sum of objects and the sum of morphisms
is defined point-wise.

Remark 3.1.39. Recall that we introduced zero morphisms by assuming there’s
a zero object. In a preadditive category you do not necessarily have a zero object
but you still have a notion of zero morphisms, namely the zero elements in the
Hom-groups. There’s a more general notion of zero morphisms generalizing these
two cases.
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Exercise 3.1.40. Let 𝒞 be a preadditive category and let 𝑋1, 𝑋2 ∈ 𝒞. Suppose
there is 𝑋 ∈ 𝒞 together with morphisms p𝑖 : 𝑋 → 𝑋𝑖 and i𝑖 : 𝑋𝑖 → 𝑋 such that

p𝑖 ∘ i𝑖 = id𝑋𝑖
, p𝑗 ∘ i𝑖 = 0 for 𝑖 ̸= 𝑗 , i1 ∘ p1 + i2 ∘ p2 = id𝑋 . (3.38)

Show that (𝑋,p𝑖, i𝑖) is a direct sum of 𝑋1 and 𝑋2. This can of course be formulated
analogously for finitely many summands.

Exercise 3.1.41. Let 𝒞 be a preadditive category. Show that any finite prod-
uct (or coproduct) can be completed to a biproduct. Hint: You can construct the
inclusions from the universal property of the product applied to specific morphisms.

Now that we have sorted out some special categories, it’s time to sort out the
appropriate functors as well. There are two things to consider:

(1) functors preserving the direct sum (when we have semiadditive categories);
(2) functors preserving the addition on morphisms (when we have preadditive

categories).
Let’s start with the first one.

Preservation of direct sums is a special case of preservation of limits and colim-
its. Let’s make this precise. Let 𝐷 : ℐ → 𝒞 be a functor, interpreted as a diagram,
and let (𝐶,𝜓) be a cone to 𝐷. Let 𝐹 : 𝒞 → 𝒞′ be a functor into some other category
𝒞′. Then we transfer our diagram 𝐷 to 𝒞′ via 𝐷′ := 𝐹 ∘𝐷 : ℐ → 𝒞′, and by functori-
ality (𝐹 (𝐶), 𝐹 (𝜓)) is a cone to 𝐷′. We say that the functor 𝐹 preserves the limit
to 𝐷 if whenever (𝐶,𝜓) is a limit (i.e. a universal cone) to 𝐷, then (𝐹 (𝐶), 𝐹 (𝜓)) is a
limit to 𝐷′. Since limits are unique, it is sufficient to check this for one specific limit.
If 𝐷 does not have a limit, there’s no condition. It should be clear what we mean
by saying that 𝐹 preserves ℐ-limits, e.g. all products etc. If 𝐹 preserves ℐ-limits for
all small categories ℐ, then it’s said to be continuous. The dual formulations for
preservation of colimits and for cocontinuous functors should be clear.

Example 3.1.42. In Ab, the direct product is the Cartesian product as sets
equipped with component-wise addition. Hence, the forget functor Ab → Set pre-
serves products. In fact, one can show that this is a continuous functor. This holds
more generally for all the forget functors to Set for the categories in Table 2.1. Even
more generally, one can prove that every functor having a right adjoint (such as
these forget functors) is continuous, and every functor having a left adjoint is cocon-
tinuous. But note that e.g. Ab→ Set does not preserve coproducts: the coproduct
in Ab is given by the direct sum but in Set it’s the disjoint union.

Exercise 3.1.43. Let 𝒞 be a category. Show that for any object 𝑋 ∈ 𝒞 the
functor Hom𝒞(𝑋,−) : 𝒞 → Set is continuous. Note: this is basically just the defini-
tion of a limit and it’s easier than it sounds—but only after you stare at it for a
bit! Similarly, for 𝑌 ∈ 𝒞 you can (but don’t have to because it’s analogous) show
that the functor Hom𝒞(−, 𝑌 ) : 𝒞op → Set is continuous. But note that this means
that Hom𝒞(−, 𝑌 ) considered as a contravariant functor 𝒞 → Set maps colimits to
limits!

The direct sum is a bit more special since it’s a limit and a colimit simultane-
ously. But if you have a direct sum (𝑋1 ⊕ 𝑋2,p𝑖, i𝑖) in 𝒞 and you have a functor
𝐹 : 𝒞 → 𝒞′, then you get a datum (𝐹 (𝑋1⊕𝑋2), 𝐹 (p𝑖), 𝐹 (i𝑖)), and you want this to
be the direct sum of 𝐹 (𝑋1) and 𝐹 (𝑋2). If this holds, you say that 𝐹 preserves
the direct sum of 𝑋1 and 𝑋2. You can formulate this of course more generally for
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direct sums with arbitrarily many summands. A functor preserves finite direct sums
if and only if it preserves direct sums of two objects.

Before we look at an example, let’s first look at functors preserving the addition
on morphisms.

Definition 3.1.44. A functor 𝐹 : 𝒞 → 𝒞′ between 𝑅-linear categories is said
to be 𝑅-linear if the induced local maps

𝐹𝑋,𝑌 : Hom𝒞(𝑋,𝑌 )→ Hom𝒞′(𝐹 (𝑋), 𝐹 (𝑌 )) (3.39)

are 𝑅-module morphisms. In case of preadditive categories, i.e. 𝑅 = Z, one speaks
of an additive functor.8

Here’s a nice lemma that is very helpful in practice and connects the two
additivity concepts of functors that we introduced.

Lemma 3.1.45. A functor between additive categories is additive if and only if
it preserves finite direct sums.

Proof. Let 𝒞 and 𝒞′ be additive categories. Suppose that 𝐹 : 𝒞 → 𝒞′ is an
additive functor. Let 𝑋1, 𝑋2 ∈ 𝒞 and let (𝑋1⊕𝑋2,p𝑖, i𝑖) be the direct sum. Because
𝐹 is additive, we get in the image a tuple satisfying all the conditions of a direct
sum in Exercise 3.1.40. Hence the image is the direct sum and this shows that
𝐹 preserves finite direct sums. Conversely, suppose that 𝐹 preserves direct sums.
Recall from (3.25) that the sum of two morphisms 𝑓, 𝑔 : 𝑋 → 𝑌 is given by

𝑓 + 𝑔 = ∇𝑌 ∘ (𝑓 ⊕ 𝑔) ∘∆𝑋 .

You can easily check that because 𝐹 preserves direct sums, it maps the diagonal
morphism, codiagonal morphism, and direct sum of morphisms to the corresponding
constructions in the image, and therefore 𝐹 (𝑓 + 𝑔) = 𝐹 (𝑓) + 𝐹 (𝑔). �

Example 3.1.46. Since 𝑅-Mod is 𝑅-linear, it follows that the Hom-functor
Hom𝑅-Mod(𝑋,−) : 𝑅-Mod→ Set is actually a functor 𝑅-Mod→ 𝑅-Mod. This func-
tor is 𝑅-linear, hence it preserves finite direct sums. You could (and should) also
prove this explicitly. In general though, it will not preserve infinite direct sums.

Let’s think about the appropriate notion of subcategory for additive categories.

Definition 3.1.47. An additive subcategory of an additive category 𝒞′ is a
subcategory 𝒞 of 𝒞′ such that:

(1) Hom𝒞(𝑋,𝑌 ) is a subgroup of Hom𝒞′(𝑋,𝑌 ) for all 𝑋,𝑌 ∈ 𝒞;
(2) 𝒞 is closed under finite direct sums in 𝒞′, i.e. the direct sum in 𝒞′ of finitely

many objects in 𝒞 is also a direct sum in 𝒞.

In this case, the category 𝒞 is itself additive and the natural functor 𝒞 → 𝒞′ is
additive. For the second condition, it is clearly enough to check that the zero object
(the empty direct sum) of 𝒞′ is contained in 𝒞 and that 𝒞 is closed under direct
sums of two objects. If 𝒞 is a full subcategory, then it is sufficient to check that the
direct sum as an object is contained in 𝒞; but if 𝒞 is not full, you need to check that
it is really a direct sum in the subcategory 𝒞 as well because the morphisms you
get in 𝒞′ from the universal property of the direct sum may not be contained in 𝒞.

8The last one may sound a bit confusing: preadditive categories but additive functors. But
there is no preadditive functor: you just want an additive map between the Hom-groups—and this
is called additive.
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Example 3.1.48. The category 𝑅-mod of finitely generated modules is an ad-
ditive full subcategory of 𝑅-Mod.

Exercise 3.1.49. Show that if 𝐹 : 𝒞 → 𝒞′ is an equivalence and 𝒞 is additive,
then 𝒞′ is additive as well and 𝐹 is additive.

3.2. Abelian categories

Now that we have categorized the direct sum of abelian groups (more generally,
of modules), it’s time to turn to some further important constructions with modules
and try to categorize them as well. Especially, for modules we have a notion of
submodules, we can take quotients by submodules, every morphism has a kernel and
an image, we have the isomorphism theorems, etc. Categorizing all these concepts,
we’ll arrive at the notion of abelian categories—categories which in many aspects
behave like the category of modules over a ring.

Let’s start with kernels. Any morphism 𝑓 : 𝐴→ 𝐵 of modules has a kernel

Ker(𝑓) := {𝑎 ∈ 𝐴 | 𝑓(𝑎) = 0} . (3.40)

Your mind is probably quite categorical already and you have noticed that this is
not a categorical definition since it uses elements. How do we categorize the kernel?
Let 𝐾 := Ker(𝑓). Then the composition of the inclusion 𝑘 : Ker(𝑓) → 𝐴 with 𝑓 is
the zero morphism 0: 𝐾 → 𝐵. This is in fact universal since if 𝑘′ : 𝐾 ′ → 𝐴 is any
other morphism with the property that 𝑓 ∘ 𝑘′ = 0, then 𝑘′ must map into 𝐾, i.e. it
factorizes through 𝑘. Note that this is actually the property of a limit, namely the
limit of the diagram

0

𝐴 𝐵
𝑓

(3.41)

Observe that (𝐾, 𝑘) is really a cone to this diagram—the morphism into 𝐵 and into
0 are forced so that we drop them in the notation—and the factorization property
noted above precisely means that (𝐾, 𝑘) is a universal cone, i.e. a limit. That’s
enough evidence to make a general definition!

Definition 3.2.1. Let 𝒞 be a category with zero object. The kernel of a
morphism 𝑓 : 𝑋 → 𝑌 is the limit to the diagram

0

𝑋 𝑌
𝑓

(3.42)

As above, note that the morphisms into 𝑌 and 0 are forced, so we can think of
a kernel as a morphism 𝑘 : 𝐾 → 𝑋 which is universal with respect to the property
that 𝑓 ∘ 𝑘 = 0. As for any other limit, if the kernel exists then it is unique—but
there’s no guarantee it actually exists. We’ll denote the kernel as usual by Ker(𝑓)
but note that this is understood to include both the object 𝐾 and the morphism 𝑘.

Since you’re now trained in category theory, you should immediately sense that
there must also be a dual concept of a kernel as well: a cokernel. This is defined
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as the colimit to the diagram

0

𝑋 𝑌
𝑓

(3.43)

i.e. it is a morphism 𝑐 : 𝑌 → 𝐶 which is universal with respect to the property that
𝑐 ∘ 𝑓 = 0. We’ll denote the cokernel by Coker(𝑓).

Definition 3.2.2. A preabelian category is an additive category in which
every morphism has a kernel and a cokernel.

Example 3.2.3. The usual kernel as in (3.40) of a morphism in 𝑅-Mod is also
a kernel in the categorical sense. In particular, any morphism has a kernel. The
cokernel of a morphism 𝑓 : 𝐴→ 𝐵 exists as well and is given by the quotient map

𝐵 𝐵/ Im(𝑓) .
=:Coker(𝑓)

(3.44)

In particular, 𝑅-Mod is preabelian.

Example 3.2.4. The usual kernel as in (3.40) of a morphism in Grp is a kernel
in the categorical sense. Cokernels are a bit more difficult. Let 𝑓 : 𝐺 → 𝐻 be a
morphism of groups. In contrast to abelian groups we can’t take 𝐻/ Im(𝑓) as in
(3.44) because the image will not necessarily be a normal subgroup and therefore
we can’t form the quotient. But we can apply a trick: we’ll take the normal closure
of Im(𝑓), i.e. the smallest normal subgroup of 𝐻 containing Im(𝑓). Let’s denote
this by ⟨Im(𝑓)𝐻⟩. Then we can form

𝐻 𝐻/⟨Im(𝑓)𝐻⟩=:Coker(𝑓)
(3.45)

and this is indeed a categorical cokernel. Hence, Grp has kernels and cokernels. But
recall from Example 3.1.20 or Example 3.1.32 that Grp is not additive and thus not
preabelian.

Example 3.2.5. Let 𝑅 be a ring. A finite direct sum of finitely generated 𝑅-
modules is of course again finitely generated and it thus follows that the category
𝑅-mod of finitely generated 𝑅-modules is an 𝑅-linear additive category.

A quotient of a finitely generated module is finitely generated as well. Hence,
the usual cokernel as defined in (3.44) for a morphism of finitely generated modules
lives in 𝑅-mod and is clearly a cokernel there as well, i.e. 𝑅-mod has cokernels.

Things are more difficult for kernels. If all finitely generated 𝑅-modules have
the property that all submodules are finitely generated as well, then the usual kernel
as defined in (3.40) for a morphism of finitely generated modules lives in 𝑅-mod and
is clearly a kernel there as well, i.e. 𝑅-mod has kernels. Rings with this property
are called (left) noetherian.

Almost all rings you know are noetherian. Clearly, fields are noetherian. One
can show that any ring which is a finite module over a noetherian ring is also
noetherian. In particular, a finite-dimensional algebra over a field is noetherian.
Moreover, there’s Hilbert’s basis theorem which says that any commutative
ring which is finitely generated (as an algebra) over a commutative noetherian ring
is itself noetherian.
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But there are non-noetherian rings, e.g. the polynomial ring in infinitely many
variables. If 𝑅 is non-noetherian, then by definition there is a finitely generated 𝑅-
module 𝑀 having a non-finitely generated submodule 𝑈 and since 𝑈 is the kernel of
the quotient map 𝑞 : 𝑀 →𝑀/𝑈 and𝑀/𝑈 is finitely generated, we have a morphism
𝑞 in 𝑅-mod whose usual kernel is not contained in 𝑅-mod. Does this already mean
that 𝑅-mod has no kernels at all? No, this is not yet clear! In principle 𝑅-mod could
have kernels which look different from the kernels in 𝑅-Mod.9 But in this particular
case we can show that the inclusion 𝑅-mod→ 𝑅-Mod preserves categorical kernels,
so that a categorical kernel in 𝑅-mod really must be of the usual form (3.40).
Hence, a morphism in 𝑅-mod has a kernel in 𝑅-mod if and only if its usual kernel
is finitely generated. It thus follows that 𝑅-mod has kernels if and only if 𝑅 is (left)
noetherian.

It remains to show that a kernel in 𝑅-mod is also a kernel in its big brother
𝑅-Mod.10 Let 𝑓 : 𝑀 → 𝑁 be a morphism of finitely generated 𝑅-modules. Let
𝑘 : 𝐾 →𝑀 be a kernel in 𝑅-mod. The claim is that 𝑘 is also a kernel in the bigger
category 𝑅-Mod. So, let 𝑘′ : 𝐾 ′ → 𝑀 be any morphism in 𝑅-Mod with 𝑓𝑘′ = 0.
We need to show that 𝑘′ factorizes uniquely through 𝑘, i.e. 𝑘′ = 𝑘𝑡 for a unique
morphism 𝑡 : 𝐾 ′ → 𝐾. By assumption, for any finitely generated submodule 𝑈 of
𝐾 ′ we have 𝑓𝑘′𝑢 = 0, where 𝑢 : 𝑈 → 𝐾 ′ is the inclusion. Hence, by the universal
property of 𝑘 in 𝑅-mod we have 𝑘′𝑢 = 𝑘𝑡𝑈 for a unique morphism 𝑡𝑈 : 𝑈 → 𝐾.
Since any module is the union of its finitely generated submodules, it follows that
a factorization 𝑘′ = 𝑘𝑡 is unique if it exists. But in turn using the uniqueness of the
𝑡𝑈 , it follows that 𝑡𝑈 and 𝑡𝑈 ′ agree on the intersection 𝑈 ∩𝑈 ′ and therefore the 𝑡𝑈
glue to a morphism 𝑡 : 𝐾 ′ → 𝐾 giving a factorization 𝑘′ = 𝑘𝑡.

Now, let’s turn to submodules and quotients. What is a subgroup of an abelian
group 𝐴? It’s a subset 𝑈 ⊆ 𝐴 which is closed under addition and taking negatives.
Again, this is not a categorical formulation, so how can we categorize this? Well,
associated to 𝑈 is the inclusion 𝑈 → 𝐴. This is an injective morphism of abelian
groups. Injectivity is still not a categorical concept but recall that we categorized
this already in Section 1.3 by the notion of monomorphisms, and monomorphisms in
Ab are the same as injective morphisms. Conversely, we can view a monomorphism
𝑢 : 𝑈 → 𝐴 as a subgroup of 𝐴, namely as Im(𝑢).

There’s just one little issue that we tacitly ignored when we said above that
we can view a monomorphism as a subobject. Namely, different monomorphisms
can define the same subgroup: for example there are two monomorphisms Z → Z
of abelian groups (one is the identity and the other one sends 1 to −1) but both
define the subgroup Z of Z. The classical notion of subgroups simply identifies all
isomorphic subobjects. We can do the same by introducing an equivalence relation
on monomorphisms.

Definition 3.2.6. Let 𝒞 be a category and let 𝑋 ∈ 𝒞. Given two monomor-
phisms 𝑢 : 𝑈 → 𝑋 and 𝑢′ : 𝑈 ′ → 𝑋 we write 𝑢 ≤ 𝑢′ if there is a morphism

9Pause a minute and think about this!
10The following nice argument is from https://math.stackexchange.com/questions/

1857330/why-is-the-category-of-finitely-generated-modules-over-a-non-noetherian-
ring-not.

https://math.stackexchange.com/questions/1857330/why-is-the-category-of-finitely-generated-modules-over-a-non-noetherian-ring-not
https://math.stackexchange.com/questions/1857330/why-is-the-category-of-finitely-generated-modules-over-a-non-noetherian-ring-not
https://math.stackexchange.com/questions/1857330/why-is-the-category-of-finitely-generated-modules-over-a-non-noetherian-ring-not
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𝜙 : 𝑈 → 𝑈 ′ making the diagram

𝑋

𝑈 𝑈 ′
𝜙

𝑢 𝑢′ (3.46)

commutative.

Since 𝑢′ in (3.46) is a monomorphism, there is at most one morphism 𝜙 making
the diagram commutative. Moreover, 𝜙 is then also a monomorphism. The relation
≤ is a preorder on the class of all monomorphisms into 𝑋, i.e. it is reflexive and
transitive. From this we get an equivalence relation = on monomorphisms into 𝑋
as follows:

𝑢 = 𝑢′ :⇔ 𝑢 ≤ 𝑢′ and 𝑢′ ≤ 𝑢 . (3.47)
Note that 𝑢 = 𝑢′ if and only if there is a diagram as in (3.46) with 𝜙 being an
isomorphism.

Definition 3.2.7. A subobject of 𝑋 is an equivalence class of monomor-
phisms into 𝑋.

We write Sub𝒞(𝑋) for the class of subobjects of𝑋. The preorder≤ on monomor-
phisms descends to a partial order on Sub𝒞(𝑋).

Example 3.2.8. In 𝑅-Mod the subobjects of an 𝑅-module 𝑀 are in bijection
with the 𝑅-submodules of 𝑀 and the partial order ≤ on subobjects is the same as
the inclusion ⊆ of submodules.

Dually, associated to a quotient 𝐴/𝑈 of abelian groups is the surjective mor-
phism 𝐴→ 𝐴/𝑈 . Surjective morphisms of abelian groups are precisely the epimor-
phisms in Ab, and given an epimorphism 𝑞 : 𝐴 → 𝑄 we can view it as a quotient
of 𝐴, namely as 𝐴/Ker(𝑞). The same game works more generally for modules. We
thus define a quotient object of 𝑋 as an equivalence class of epimorphisms out
of 𝑋.

Exercise 3.2.9. Let 𝑓 : 𝑋 → 𝑌 be a morphism in a category 𝒞. Show that the
kernel of 𝑓 (if it exists) is a subobject of 𝑋, and that the cokernel of 𝑓 (if it exists)
is a quotient of 𝑌 .

When we discussed monomorphisms and epimorphisms in Section 1.3 we have
seen quite strange behavior. For example, we have seen in Example 1.3.4 that the
canonical ring morphism Z → Q is an epimorphism in Ring, which by our new
terminology means that Z is a quotient of Q. So, you need to be a bit careful
when applying your intuition to these general categorical concepts. But even in
preabelian categories, subobjects and quotients do not yet have to behave like for
modules—and this is the reason why these categories are only called preabelian.
Here’s something that we would certainly want for a category behaving like 𝑅-Mod.
Consider an abelian group 𝐴 and a subgroup 𝑈 , i.e. a monomorphism 𝑢 : 𝑈 → 𝐴.
The quotient of 𝐴 by 𝑈 is the epimorphism 𝑞 : 𝐴 → 𝐴/𝑈 . Note that 𝑞 is precisely
the cokernel of 𝑢 by (3.44). Now, the fact that we can form a quotient of 𝐴 where
we “precisely mod out 𝑈 ” is formalized by the two equations

Ker(Coker(𝑢)) = 𝑢 , Coker(Ker(𝑞)) = 𝑞 . (3.48)
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There’s a priori no reason why these equations should hold in a general category. In
Example 3.2.4 we have seen that the category Grp has kernels and cokernels—great;
but the cokernel of a monomorphism 𝑢 : 𝑈 → 𝐺 is given by 𝑞 : 𝐺→ 𝐺/⟨𝑈𝐺⟩, where
⟨𝑈𝐺⟩ is the normal closure of 𝑈 in 𝐺, and we thus have Ker(Coker(𝑞)) = 𝑈𝐺, which
is not necessarily equal to 𝑈 . This observation is really just the fact that in Grp we
cannot form the quotient by an arbitrary subgroup—we need normal subgroups.
This is no problem in 𝑅-Mod, however, and we thus make the following definitions.

Definition 3.2.10. Let 𝒞 be a category with kernels and cokernels.
(1) A monomorphism 𝑢 in 𝒞 is called normal if Ker(Coker(𝑢)) = 𝑢.
(2) An epimorphism 𝑞 in 𝒞 is called conormal if Coker(Ker(𝑞)) = 𝑞.

Exercise 3.2.11. Let 𝒞 be a category with kernels and cokernels. Show that a
monomorphism is normal if and only if it is the kernel of some morphism. Dually,
show that an epimorphism is conormal if and only if it is the cokernel of some
morphism. In the literature, you often see this apparently more general definition
of (co)normality.

Definition 3.2.12. An abelian category is a preabelian category in which
every monomorphism is normal and every epimorphism is conormal.

As for additivity, note that being abelian is a property of a category and not a
structure.

Example 3.2.13. The category 𝑅-Mod is abelian.

Example 3.2.14. The category 𝑅-mod of finitely generated modules is abelian
if and only if 𝑅 is (left) noetherian. This follows from the discussion in Exam-
ple 3.2.5. In particular, the category 𝐴-mod of finite-dimensional modules over a
finite-dimensional algebra 𝐴 over a field is abelian. As a special case, we obtain
that the category rep𝐾(𝐺) of finite-dimensional representations of a finite group 𝐺
over a field 𝐾 is abelian.

Example 3.2.15. If 𝒞 is abelian, then the category Gr(𝒞) of graded objects
from Example 3.1.36 is abelian. The kernel and cokernel of a morphism are defined
component-wise.

Example 3.2.16. Similarly, if 𝒞 is abelian, then the categories Ch∙(𝒞) and
Ch∙(𝒞) of (co)chain complexes over 𝒞 from Example 3.1.37 are abelian.

Example 3.2.17. The category Fun(𝒞, 𝒞′) of functors from a category 𝒞 into
an abelian category 𝒞′ is abelian.

Remark 3.2.18. There are preabelian categories which are not abelian, i.e. the
normality conditions are violated (the example Grp which violates the normality
conditions as well is not preabelian). An example is the category of torsion-free
abelian groups.

Let 𝒞 be an abelian category. If 𝑢 : 𝑈 → 𝑋 is a subobject of 𝑋, then we define
the quotient of 𝑋 by 𝑈 as

𝑋/𝑈 := Coker(𝑢) . (3.49)

As usual, we drop the morphism 𝑢 in the notation (and thinking) but keep in
mind that it’s always there. In 𝑅-Mod this categorical quotient is exactly the usual
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quotient of a module by a submodule. Question for you: in 𝑅-Mod, what is the
kernel of the cokernel of a morphism 𝑓? Yes, it’s precisely the image of 𝑓 ! So, let’s
define in general the image of a morphism 𝑓 as

Im(𝑓) := Ker(Coker(𝑓)) . (3.50)

We can now define the following fundamental concept. Consider a sequence

· · · 𝑋𝑖−1 𝑋𝑖 𝑋𝑖+1 · · ·𝑓𝑖−2 𝑓𝑖−1 𝑓𝑖 𝑓𝑖+1 (3.51)

of morphisms in an abelian category 𝒞 indexed by integers 𝑖 in some interval 𝐼. If
𝑖 ∈ 𝐼 is such that also 𝑖+ 1 ∈ 𝐼, then the sequence is called exact at position 𝑖 if

Im(𝑓𝑖) = Ker(𝑓𝑖+1) , (3.52)

and the sequence is called exact if it is exact at all positions 𝑖 ∈ 𝐼 with 𝑖+ 1 ∈ 𝐼.

Exercise 3.2.19. Let 𝒞 be an abelian category. Show that:

(1) a sequence 0→ 𝑋
𝑓→ 𝑌 is exact if and only if 𝑓 is a monomorphism.

(2) a sequence 𝑋 𝑓→ 𝑌 → 0 is exact if and only if 𝑓 is an epimorphism.
(3) a sequence 0→ 𝑋

𝑓→ 𝑌 → 0 is exact if and only if 𝑓 is an isomorphism.

A short exact sequence is an exact sequence of the form

0 𝑈 𝑋 𝑄 0 .𝑢 𝑞 (3.53)

By Exercise 3.2.19, this means that 𝑢 is a monomorphism (i.e. a subobject), 𝑞 is
an epimorphism (i.e. a quotient object), and Im(𝑢) = Ker(𝑞). By definition of the
image, the latter condition means that Ker(Coker(𝑢)) = Ker(𝑞). Now, taking the
cokernel and using normality and conormality, we obtain

Coker(𝑢) = Coker(Ker(Coker(𝑢))) = Coker(Ker(𝑞)) = 𝑞 ,

i.e. in terms of objects we have
𝑄 ≃ 𝑋/𝑈 . (3.54)

Conversely, for any subobject 𝑢 : 𝑈 → 𝑋 we obtain a short exact sequence as in
(3.53) with 𝑄 = 𝑋/𝑈 . Hence, short exact sequences are a handy way to encode
subobjects and their quotients.

Exercise 3.2.20. Show that an exact sequence can be split into a series of
short exact sequences.

When we introduced additive categories, we also introduced their structure
preserving functors, namely the additive functors. What are the structure preserving
functors for abelian categories? Those preserving exact sequences!

Definition 3.2.21. A functor 𝐹 : 𝒞 → 𝒞′ between abelian categories is exact
if it is additive and if for any short exact sequence

0 𝑈 𝑋 𝑄 0𝑢 𝑞 (3.55)

the induced sequence

0 𝐹 (𝑈) 𝐹 (𝑋) 𝐹 (𝑄) 0
𝐹 (𝑢) 𝐹 (𝑞)

(3.56)

is exact.
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An exact functor preserves kernels and cokernels. Moreover, by Exercise 3.2.20
an exact functor preserves exactness of sequences of arbitrary length.

Example 3.2.22. Let 𝜙 : 𝑅 → 𝑆 be a morphism of rings. Then any 𝑆-module
𝑊 can naturally be viewed as an 𝑅-module 𝑊𝑅 via

𝑟𝑤 := 𝜙(𝑟)𝑤 (3.57)

for 𝑟 ∈ 𝑅 and 𝑤 ∈ 𝑊 . An 𝑆-module morphism 𝑓 : 𝑊 → 𝑊 ′ is automatically also
an 𝑅-module morphism 𝑓𝑅 : 𝑊𝑅 →𝑊 ′

𝑅. In total, we get a functor

(−)𝑅 : 𝑆-Mod→ 𝑅-Mod (3.58)

called scalar restriction. This functor is obviously exact.

Exercise 3.2.23. Show that if 𝐹 : 𝒞 → 𝒞′ is an equivalence of categories and
𝒞 is abelian, then 𝒞′ is abelian and 𝐹 is exact.

As we did for additive categories in Definition 3.1.47, let’s think about the
appropriate notion of a subcategory of an abelian category.

Definition 3.2.24. An abelian subcategory of an abelian category 𝒞′ is an
additive subcategory 𝒞 of 𝒞′ which is closed under kernels and cokernels in 𝒞′, i.e.
the kernel (cokernel) in 𝒞′ of a morphism in 𝒞 is also kernel (cokernel) in 𝒞.

In this case, the category 𝒞 is itself abelian and the natural functor 𝒞 → 𝒞′
is exact. As we noted for the direct sum in additive subcategories, if 𝒞 is a full
subcategory, then it is sufficient to check that the kernel (cokernel) as an object is
contained in 𝒞; but if 𝒞 is not full, you need to check that the kernel (cokernel) in
𝒞′ is really a kernel (cokernel) in 𝒞 as well.

Example 3.2.25. If 𝑅 is (left) noetherian, then 𝑅-mod is an abelian full sub-
category of 𝑅-Mod.

There would be a lot to say about abelian categories—whole books have been
written on them [5]. We cannot—and don’t have to—delve into this subject here
and finish with one fundamental result about abelian categories which can be very
helpful when working with them. Abelian categories are defined in a way so that
subobjects, quotients, exact sequences, and the like are defined and behave very
similar to what we are used to from modules over a ring. Now, you should ask: do
“basic” theorems like the third isomorphism theorem

(𝐴/𝑇 )/(𝑈/𝑇 ) ≃ 𝐴/𝑈 (3.59)

for an abelian group 𝐴 and subgroups 𝑇 ⊆ 𝑈 of 𝐴 hold in any abelian category?
And do we really need to reprove all this categorically now? One needs to be careful
with the word “basic” but if we mean “general categorical statements about modules
that can be phrased in terms of exact sequences”—like the isomorphism theorem
(3.59)—then we don’t have to reprove them: the reason is the amazing Freyd–
Mitchell embedding theorem [5, 10].

Theorem 3.2.26. If 𝒞 is an essentially small abelian category, then there is a
ring 𝑅 and an exact embedding 𝐹 : 𝒞 → 𝑅-Mod, i.e. 𝒞 is equivalent to an abelian
full subcategory of 𝑅-Mod.

The proof needs some considerable amount of work and we will just take this
as a fact here. Before I’ll show how to use the theorem in practice, I want to make
some remarks.
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Remark 3.2.27. The basic idea of the proof of Theorem 3.2.26 is to embed 𝒞
into the full subcategory ℒ of Fun(𝒞,Ab) consisting of so-called left exact functors,
and then show that ℒ is equivalent to 𝑅-Mod, where 𝑅 := Endℒ(𝐼) for a special
object 𝐼 of ℒ. The ring 𝑅 is not explicit and therefore it’s still absolutely justified
developing general theory of abelian categories.

In many steps of the proof—e.g. for showing that Fun(𝒞,Ab) is a so-called
Grothendieck category (which has nice properties) and that the special object 𝐼
exists—you need that 𝒞 is a small category—this is why the size assumption is
in the theorem. Once you have proven the theorem for small categories, you get
it quickly extended to essentially small categories because if 𝒞 is an essentially
small category, then by definition there is an equivalence 𝐹 : 𝒞 → 𝒞′ to a small
category 𝒞′; the category 𝒞′ is abelian and 𝐹 is exact by Exercise 3.2.23, hence by
the theorem you get an exact embedding 𝒞′ → 𝑅-Mod; composed with 𝐹 you get
an exact embedding 𝒞 → 𝑅-Mod.

You could ask whether the size assumption is simply because we don’t have a
better proof. But it’s evident that there needs to be some sort of size restriction
because there are some size restrictions already in 𝑅-Mod. Namely, since 𝐹 is an
embedding, it induces an injection

Hom𝒞(𝑋,𝑌 )→ Hom𝑅-Mod(𝐹 (𝑋), 𝐹 (𝑌 )) (3.60)

for all 𝑋,𝑌 ∈ 𝒞. Since 𝑅-Mod is locally small, it follows that 𝒞 must be locally small
as well. Moreover, since 𝐹 is exact, it induces for any object 𝑋 ∈ 𝒞 an injection

Sub𝒞(𝑋)→ Sub𝑅-Mod(𝐹 (𝑋)) . (3.61)

In particular, the class Sub𝒞(𝑋) needs to be a set because the collection of submod-
ules of a module is a set! Categories for which Sub𝒞(𝑋) is a set for all objects 𝑋 are
called well-powered. Small categories are certainly well-powered, and a category
equivalent to a well-powered category is well-powered. Hence, essentially small cat-
egories are well-powered. But there are (locally small) abelian categories which are
not well-powered11 and which therefore cannot be embedded into 𝑅-Mod.12

Now, let’s use Theorem 3.2.26 to prove the third isomorphism theorem (3.59)
in any abelian category 𝒞. Let 𝑋 ∈ 𝒞 and let 𝑇 ≤ 𝑈 ≤ 𝑋 be subobjects. If 𝒞
is essentially small, then we get an exact embedding 𝐹 : 𝒞 → 𝑅-Mod. Because 𝐹
is exact, it maps subobjects to subobjects and commutes with taking quotients.
Hence, by using the isomorphism theorem for modules we get

𝐹 ((𝑋/𝑇 )/(𝑈/𝑇 )) ≃ 𝐹 (𝑋/𝑇 )/𝐹 (𝑈/𝑇 ) ≃ (𝐹 (𝑋)/𝐹 (𝑇 )) / (𝐹 (𝑈)/𝐹 (𝑇 )) (3.62)
≃ 𝐹 (𝑋)/𝐹 (𝑈) ≃ 𝐹 (𝑋/𝑈) . (3.63)

Since 𝐹 is an embedding and thus an equivalence onto its full image, it follows that

(𝑋/𝑇 )/(𝑈/𝑇 ) ≃ 𝑋/𝑈 . (3.64)

In a similar fashion you can prove that any “general categorical statement about
modules that can be phrased in terms of exact sequences” also holds in any abelian

11See e.g. https://mathoverflow.net/questions/93853/abelian-category-which-is-not-
well-powered.

12I assume that locally small and well-powered also won’t be enough to embed into 𝑅-Mod
but I don’t know a counter-example right now. My point was only to convince you that you
certainly need some size restrictions.

https://mathoverflow.net/questions/93853/abelian-category-which-is-not-well-powered
https://mathoverflow.net/questions/93853/abelian-category-which-is-not-well-powered
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category—you just need to make sure that you only deal with statements that are
preserved by an exact embedding.

There’s only one minor issue left. To apply Theorem 3.2.26 we need to assume
that 𝒞 is essentially small. What if 𝒞 is not essentially small? The third isomorphism
theorem (3.64) just deals with three objects. If we could fit them into a small
abelian full subcategory, then we could deduce the third isomorphism theorem for
any abelian category from the one we have just proven for small abelian categories.
This is indeed always possible:

Lemma 3.2.28. Let 𝒞 be an abelian category. Then any set 𝒳 of objects in 𝒞
lies in a small abelian full subcategory of 𝒞.

Proof. We inductively construct a sequence (𝒞𝑖)𝑖∈N of small full subcategories
of 𝒞 as follows. Let 𝒞0 be the full subcategory of 𝒞 whose set of objects is equal to 𝒳 .
Now, let 𝑖 > 0 and assume 𝒞𝑖 is already constructed. We then let 𝒞𝑖+1 be the full
subcategory of 𝒞 consisting of a choice of kernel and cokernel of every morphism
in 𝒞𝑖 and of a choice of direct sum for any finite set of objects in 𝒞𝑖. Here, the
kernel, cokernel, and direct sum are those in 𝒞. Since 𝒞𝑖 is small, the category 𝒞𝑖+1

is small as well. Moreover, we have 𝒞𝑖 ⊆ 𝒞𝑖+1. Hence, 𝒞′ :=
⋃︀
𝑖∈N 𝒞𝑖 is a small full

subcategory of 𝒞 containing 𝒳 . Since 𝒞′ is a full subcategory and closed under finite
direct sums, it is an additive subcategory. Moreover, by construction 𝒞′ is closed
under taking kernels and cokernels. Hence, 𝒞′ is an abelian subcategory. �

Exercise 3.2.29. Prove the nine lemma in an abelian category 𝒞: if

0 0 0

0 𝑋1 𝑋2 𝑋3 0

0 𝑌1 𝑌2 𝑌3 0

𝑍1 𝑍2 𝑍3

0 0 0

(3.65)

is a commutative diagram with exact rows and exact columns, then there are
uniquely determined morphisms 𝑍1 → 𝑍2 and 𝑍2 → 𝑍3 making the diagram com-
mutative. Moreover, the sequence 0→ 𝑍1 → 𝑍2 → 𝑍3 → 0 is exact. Use this lemma
to (re)prove the third isomorphism theorem.

We want to say a bit more about subobjects in an abelian category. We have
categorized the notion of subgroups of an abelian group via (equivalence classes of)
subobjects and the inclusion of subgroups via the relation ≤. There are a few more
things we can do with subgroups. If 𝐴 is an abelian group und 𝑈1, 𝑈2 are subgroups,
we can form their intersection 𝑈1 ∩ 𝑈2 and we can take their “union” 𝑈1 ∪ 𝑈2 by
which I actually mean their sum 𝑈1 + 𝑈2 but I want to use the symbol ∪ to avoid
excessive use of the symbol +. The intersection and union have an order-theoretic
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meaning: they are the infimum (greatest lower bound) and supremum (least
upper bound), respectively, of 𝑈1 and 𝑈2 in the partially ordered set of subgroups
of 𝐴. From this point of view the ∪ symbol is also justified. A partially ordered set
in which every two elements have an infimum and a supremum is called a lattice.
Note that infimum and supremum are unique if they exist.

We want to categorize intersections and sums for subobjects in an abelian
category 𝒞. Let’s start with the union. Let 𝑋 ∈ 𝒞 and let 𝑢𝑖 : 𝑈𝑖 → 𝑋 for 𝑖 = 1, 2
be two subobjects of 𝑋. The universal property of the direct sum 𝑈1 ⊕ 𝑈2 applied
to 𝑢𝑖 yields a unique morphism

𝑢12 : 𝑈1 ⊕ 𝑈2 → 𝑋 , (3.66)

with the property that 𝑢𝑖 = 𝑢12 ∘ i𝑖, where i𝑖 : 𝑈𝑖 → 𝑈1 ⊕ 𝑈2 is the inclusion. In
case of abelian groups, this is the map (𝑎1, 𝑎2) ↦→ 𝑎1 + 𝑎2 whose image is precisely
𝑈1 ∪ 𝑈2, which is what we want. So, let’s just take

𝑢1 ∪ 𝑢2 := Im(𝑢12) = Ker(Coker(𝑢12)) . (3.67)

Let’s write 𝑈1 ∪𝑈2 for the domain of 𝑢1 ∪ 𝑢2. Since kernels are monomorphisms, it
follows that 𝑢1 ∪ 𝑢2 is a subobject of 𝑋. We did the right thing because:

Lemma 3.2.30. 𝑢1 ∪ 𝑢2 is the supremum of 𝑢1 and 𝑢2 in Sub𝒞(𝑋).

Proof. We need to show that 𝑢𝑖 ≤ 𝑢1 ∪ 𝑢2 and that if 𝑢 : 𝑈 → 𝑋 is any
subobject of 𝑋 with 𝑢𝑖 ≤ 𝑢, then 𝑢1 ∪ 𝑢2 ≤ 𝑢. One could prove this by general
nonsense but I have a simpler suggestion: let’s use the Freyd–Mitchell embedding
theorem (Theorem 3.2.26)! For modules, the claim is obvious. By Lemma 3.2.28
we can find a small abelian full subcategory 𝒞′ of 𝒞 containing all the objects in
question, i.e. containing 𝑈𝑖, 𝑈 , and 𝑋. Let 𝐹 : 𝒞′ → 𝑅-Mod be an exact embedding
into a module category. Then by construction 𝐹 (𝑢1 ∪ 𝑢2) = 𝐹 (𝑢1) ∪ 𝐹 (𝑢2). Now,
𝐹 (𝑢𝑖) ≤ 𝐹 (𝑢1) ∪ 𝐹 (𝑢2) is clear and it follows that also 𝑢𝑖 ≤ 𝑢1 ∪ 𝑢2. Moreover,
𝐹 (𝑢) ≤ 𝐹 (𝑢1) ∪ 𝐹 (𝑢2), hence 𝑢 ≤ 𝑢1 ∪ 𝑢2.13 �

Let’s come to the intersection. Let 𝑞𝑖 := Coker(𝑢𝑖) : 𝑋 → 𝑋/𝑈𝑖 =: 𝑄𝑖 be the
quotient morphism. The universal property of the direct sum 𝑄1 ⊕ 𝑄2 applied to
𝑞𝑖 yields a unique morphism

𝑞12 : 𝑋 → 𝑄1 ⊕𝑄2 (3.68)

with the property that p𝑖 ∘ 𝑞12 = 𝑞𝑖, where p𝑖 : 𝑄1 ⊕𝑄2 → 𝑄𝑖 is the projection. In
case of abelian grops, the kernel of 𝑞12 is precisely the intersection 𝑈1∩𝑈2. So, let’s
just take

𝑢1 ∩ 𝑢2 := Ker(𝑞12) . (3.69)
Let’s write 𝑈1 ∩ 𝑈2 for the domain of 𝑢1 ∩ 𝑢2. Again, since kernels are monomor-
phisms, it follows that 𝑢1 ∩ 𝑢2 is a subobject of 𝑋. Similarly as for the union you
prove that 𝑢1 ∩ 𝑢2 is the infimum of 𝑢1 and 𝑢2 in Sub𝒞(𝑋).

We have thus shown that for any object 𝑋 of an abelian category 𝒞, any two
elements in Sub𝒞(𝑋) have an infimum and a supremum. Hence, if Sub𝒞(𝑋) is
actually a set, i.e. if 𝒞 is well-powered (e.g. if 𝒞 is essentially small), then Sub𝒞(𝑋)
is a lattice. Nice!

13Note that we could get another embedding for varying 𝑢 but this does not matter since all
we want to conclude is that 𝑢𝑖 ≤ 𝑢1 ∪ 𝑢2 and 𝑢 ≤ 𝑢1 ∪ 𝑢2 for any given 𝑢.
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Exercise 3.2.31. Show that the second isomorphism theorem holds in any
abelian category 𝒞: given subobjects 𝑈1 and 𝑈2 of an object 𝑋 ∈ 𝒞, then

(𝑈1 ∪ 𝑈2)/𝑈2 ≃ 𝑈1/(𝑈1 ∩ 𝑈2) . (3.70)

Hint: use the nine lemma (Exercise 3.2.29).

Remark 3.2.32. The study of exactness (and non-exactness) of sequences and
functors is called homological algebra. This topic may sound harmless and boring
but it is a fundamental part of mathematics—whole books have been written on this
subject as well. Abelian categories are the natural general stage to do homological
algebra.14 To get a minimal taste of homological algebra, recall the example of chain
complexes from Example 3.1.37. In the definition of a complex 𝐴∙ = (𝐴𝑖, 𝑑𝑖) we
had the strange condition 𝑑𝑖−1 ∘ 𝑑𝑖 = 0 on the differentials. For complexes over an
abelian category, you can quickly check that this is equivalent to the property that

Im(𝑑𝑖) ⊆ Ker(𝑑𝑖−1) (3.71)

and therefore we can define for each 𝑖 the 𝑖-th homology object

H𝑖(𝐴∙) := Ker(𝑑𝑖)/ Im(𝑑𝑖+1) . (3.72)

The complex 𝐴∙ is exact if and only if all homology objects are zero. Hence, the
homology measures “how far” the complex is from being exact! Similarly, for a
cochain complex 𝐴∙ we can define the cohomology object

H𝑖(𝐴∙) := Ker(𝑑𝑖)/ Im(𝑑𝑖−1) . (3.73)

Homological algebra is concerned with problems like finding tools to compute the
(co)homology etc. The motivation for all this is that there are (surprisingly) many
situations in practice where you can define on a category 𝒞 a functor 𝐶 : 𝒞 → Ch∙(𝑅)
to chain complexes over a ring 𝑅, say, and since 𝐶 is a functor, the homology
objects H𝑖(𝑋) := H𝑖(𝐶∙(𝑋)) of the chain complex 𝐶∙(𝑋) associated to 𝑋 ∈ 𝒞 are
(algebraic) invariants of 𝑋. For example, one can associate to any topological space
𝑋 the so-called singular chain complex 𝐶∙(𝑋) ∈ Ch∙(Z). The 𝑖-th term of this
complex consists of the free abelian group on the continuous images of 𝑖-simplices
in 𝑋. The homology groups H𝑖(𝑋) := H𝑖(𝐶∙(𝑋)) are called singular homology
groups of 𝑋. They are very important topological invariants. Intuitively, H𝑖(𝑋)
counts the 𝑖-dimensional holes in 𝑋.

3.3. Finite categories

So far, all categories were quite general. This is nice because we can cover a
lot of examples but it’s also hard because a general category can be arbitrarily
complicated and we don’t really have a starting point for studying it. We’ll now
come to a special class of categories which has such a starting point and arises
frequently in representation theory (and in the theory of tensor categories). All
objects in these categories are “built up” from “simple” objects. So, you would start
with describing the simple objects and then see how far you can get—but at least
there’s a starting point.

Throughout, 𝒞 denotes an abelian category.

14There’s a more general notion of exact categories for which a lot of homological algebra
still works as usual.
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Definition 3.3.1. An object 𝑋 ∈ 𝒞 is simple if it is not (isomorphic to) the
zero object and has no subobjects other than 0 and 𝑋.

Example 3.3.2. In 𝐾-Vec the only simple object (up to isomorphism) is the
one-dimensional vector space 𝐾.

In the example 𝐾-Vec, it’s already clear that any object is “built up” from
simple objects in the sense that any vector space is a direct sum of copies of the
unique simple object 𝐾. We’ll be mostly concerned with categories where objects
are “built up” from finitely many simple objects. This is true for example for the
finite version 𝐾-vec. On the other hand, it’s quite a strong condition already that
objects are direct sums of simple objects—such categories are called semisimple
and will be discussed in more detail in Section 3.4. I first want to focus on a weaker
property.

Definition 3.3.3. A composition series of an object 𝑋 ∈ 𝒞 is a descending
finite chain

0 = 𝑋0 < 𝑋1 < · · · < 𝑋𝑛−1 < 𝑋𝑛 = 𝑋 (3.74)
of subobjects of𝑋 such that each successive quotient𝑋𝑖/𝑋𝑖−1 is simple. The integer
𝑛 is called the length of the composition series.

We want to prove the Jordan–Hölder theorem:

Theorem 3.3.4. Suppose that 𝑋 has a composition series. Then any two com-
position series of 𝑋 are equivalent in the sense that if

0 = 𝑋0 < 𝑋1 < · · · < 𝑋𝑛−1 < 𝑋𝑛 = 𝑋

and
0 = 𝑋 ′

0 < 𝑋 ′
1 < · · · < 𝑋 ′

𝑚−1 < 𝑋 ′
𝑚 = 𝑋

are two composition series of 𝑋, then 𝑚 = 𝑛 and there is a permutation 𝜎 on the
indices such that

𝑋𝑖/𝑋𝑖−1 ≃ 𝑋 ′
𝜎(𝑖)/𝑋

′
𝜎(𝑖)−1 (3.75)

for all 𝑖. In particular, the length of a composition series and the multiplicity

[𝑋 : 𝑆] := #{𝑖 | 𝑋𝑖/𝑋𝑖−1 ≃ 𝑆} (3.76)

of a simple object 𝑆 as simple quotient in a composition series of 𝑋 are independent
of the composition series.

For the proof, we’ll need two lemmas. But first, I want to make a remark.

Remark 3.3.5. Maybe you know the Jordan–Hölder theorem already for mod-
ules and wonder why we don’t simply use the Freyd–Mitchell embedding theorem
to quickly deduce the Jordan–Hölder theorem for arbitrary abelian categories. The
problem is that being simple is not a property in terms of exact sequences and is
therefore not necessarily preserved by an exact embedding: if 𝐹 : 𝒞 → 𝑅-Mod is
an exact embedding and 𝑋 is simple, then certainly 𝐹 (𝑋) is a simple object in
its full image but there is no reason why 𝐹 (𝑋) should be a simple module, i.e. a
simple object in the big category 𝑅-Mod; there may well be a submodule 𝑈 of 𝐹 (𝑋)
which is not contained in the image of 𝐹 . So, not everything is solved by using the
Freyd–Mitchell embedding theorem. Nonetheless, the proof of the Jordan–Hölder
theorem works exactly like the one for modules.
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Lemma 3.3.6. If 𝑈1 < 𝑋 and 𝑈2 < 𝑋 are two distinct subobjects of 𝑋 such
that 𝑋/𝑈𝑖 is simple, then 𝑋 = 𝑈1 ∪ 𝑈2.

Proof. We have 𝑈𝑖 ≤ 𝑈1 ∪𝑈2. Since 𝑈1 ̸= 𝑈2, we must have 𝑈𝑖 ̸= 𝑈1 ∪𝑈2 for
some 𝑖. Without loss of generality, we can assume that 𝑖 = 2. From the nine lemma
Exercise 3.2.29 we get a commutative diagram

0 0 0

0 𝑈2 𝑈2 0 0

0 𝑈1 ∪ 𝑈2 𝑋 𝑋/(𝑈1 ∪ 𝑈2) 0

0 (𝑈1 ∪ 𝑈2)/𝑈2 𝑋/𝑈2 𝑋/(𝑈1 ∪ 𝑈2) 0

0 0 0

(3.77)

with exact rows and exact columns. From the bottom row we get a monomorphism
(𝑈1∪𝑈2)/𝑈2 → 𝑋/𝑈2, i.e. (𝑈1∪𝑈2)/𝑈2 is a subobject of𝑋/𝑈2. Since (𝑈1∪𝑈2)/𝑈2 ̸=
0 and 𝑋/𝑈2 is simple by assumption, we must have 𝑈1 ∪ 𝑈2 = 𝑋. �

Lemma 3.3.7. Suppose that 𝑋 has a composition series

0 = 𝑋0 < 𝑋1 < · · · < 𝑋𝑛 = 𝑋 .

Let 𝑈 < 𝑋 with 𝑋/𝑈 simple. Then there is a composition series of the form

0 = 𝑋 ′
0 < · · · < 𝑋 ′

𝑛−2 < 𝑈 < 𝑋 . (3.78)

In particular, 𝑈 has a composition series as well.

Proof. We’ll prove this by induction on 𝑛. The case 𝑛 = 0 is clear and if
𝑛 = 1, then 𝑋 is already simple and the claim is clear as well. Now, assume
that 𝑛 > 1. If 𝑈 = 𝑋𝑛−1, the claim is clear, so we assume 𝑈 ̸= 𝑋𝑛−1. Then it
follows from Lemma 3.3.6 that 𝑋 = 𝑈 ∪𝑋𝑛−1. The second isomorphism theorem
(Exercise 3.2.31) yields

𝑋/𝑈 = (𝑈 ∪𝑋𝑛−1)/𝑈 ≃ 𝑋𝑛−1/(𝑋𝑛−1 ∩ 𝑈) ,

which implies that 𝑋𝑛−1/(𝑋𝑛−1∩𝑈) is simple. The object 𝑋𝑛−1 has a composition
series of length 𝑛− 1. Hence, by induction there is a composition series

0 = 𝑋 ′
0 < 𝑋 ′

1 < · · · < 𝑋 ′
𝑛−3 < 𝑋 ′

𝑛−2 := 𝑋𝑛−1 ∩ 𝑈 < 𝑋 ′
𝑛−1 = 𝑋𝑛−1 .

In particular, 𝑋𝑛−1 ∩ 𝑈 has a composition series of length 𝑛 − 2. This can be
completed to a composition series

0 = 𝑋 ′
0 < 𝑋 ′

1 < · · · < 𝑋 ′
𝑛−3 < 𝑋 ′

𝑛−2 < 𝑈 < 𝑋

since
𝑈/𝑋 ′

𝑛−2 = 𝑈/(𝑈 ∩𝑋𝑛−1) ≃ (𝑈 ∪𝑋𝑛−1)/𝑋𝑛−1 = 𝑋/𝑋𝑛−1

is simple by the second isomorphism theorem. �
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Proof of Theorem 3.3.4. The proof is by induction on the minimal length
𝑛 of a composition series of 𝑋. The claim is clear for 𝑛 = 0, 1 since there is only one
composition series in this case. Now, let 𝑛 > 1. Consider two composition series of
𝑋 as in the statement of Theorem 3.3.4. We can assume that 𝑋𝑛−1 ̸= 𝑋 ′

𝑚−1 since
otherwise the statement can be reduced to 𝑋𝑛−1. Then by Lemma 3.3.6 we have
𝑋 = 𝑋𝑛−1 ∪𝑋 ′

𝑚−1. By the second isomorphism theorem we have

𝑋/𝑋𝑛−1 = (𝑋𝑛−1 ∪𝑋 ′
𝑚−1) ≃ 𝑋 ′

𝑚−1/(𝑋𝑛−1 ∩𝑋 ′
𝑚−1) ,

which is simple. Hence, by Lemma 3.3.7 there is a composition series of 𝑋𝑛−1 of
the form

0 = 𝑋 ′′
0 < 𝑋 ′′

1 < · · · < 𝑋 ′′
𝑛−3 < 𝑋𝑛−1 ∩𝑋 ′

𝑚−1 < 𝑋𝑛−1 .

But also

𝑋/𝑋 ′
𝑚−1 = (𝑋𝑛−1 ∪𝑋 ′

𝑚−1)/𝑋 ′
𝑚−1 ≃ 𝑋𝑛−1/(𝑋𝑛−1 ∩𝑋 ′

𝑚−1) < 𝑋𝑛−1

is simple and therefore

0 = 𝑋 ′′
0 < 𝑋 ′′

1 < · · · < 𝑋 ′′
𝑛−3 < 𝑋𝑛−1 ∩𝑋 ′

𝑚−1 < 𝑋 ′
𝑚−1

is a composition series of 𝑋 ′
𝑚−1 of length 𝑛− 1. In particular, the minimal length

of composition series of 𝑋 ′
𝑚−1 is ≤ 𝑛− 1. Since

0 = 𝑋 ′
0 < 𝑋 ′

1 < . . . < 𝑋 ′
𝑚−2 < 𝑋 ′

𝑚−1

is another composition series of 𝑋 ′
𝑚−1, it follows by induction that 𝑚− 1 = 𝑛− 1,

i.e. 𝑚 = 𝑛. We’re now in the following situation:

0 = 𝑋0 𝑋1 . . . 𝑋𝑛−3 𝑋𝑛−2 𝑋𝑛−1

0 = 𝑋 ′′
0 𝑋 ′′

1 . . . 𝑋 ′′
𝑛−3 𝑋𝑛−1 ∩𝑋 ′

𝑚−1 𝑋

0 = 𝑋 ′
0 𝑋 ′

1 . . . 𝑋 ′
𝑚−3 𝑋 ′

𝑚−2 𝑋 ′
𝑚−1

From this diagram it follows by induction that the simple quotients (with their
multiplicity) of a composition series of 𝑋 are independent of the composition series.

�

Definition 3.3.8. An object 𝑋 ∈ 𝒞 admitting a composition series is said to
be of finite length. The length of one (any) composition series is called the length
of 𝑋 and is denoted by ℓ(𝑋). A length category is an essentially small abelian
category in which all objects are of finite length.

Example 3.3.9. The category𝐾-vec is a length category and ℓ(𝑉 ) = dim𝐾(𝑉 ).
More generally, it is a classical fact that a finitely generated module over an ar-
tinian ring 𝑅 (a ring satisfying the descending chain condition on ideals) has a
composition series.15 Hence, 𝑅-mod for an artinian ring 𝑅 is a length category. In
particular, 𝐴-mod for a finite-dimensional algebra 𝐴 over a field 𝐾 is a length cat-
egory. As a special case, we deduce that rep𝐾(𝐺) for a finite group 𝐺 is a length
category.

15You can find a proof in my notes https://ulthiel.com/math/wp-content/uploads/
commutative-algebra-2016-2017-stuttgart/Vorlesung-20.pdf.

https://ulthiel.com/math/wp-content/uploads/commutative-algebra-2016-2017-stuttgart/Vorlesung-20.pdf
https://ulthiel.com/math/wp-content/uploads/commutative-algebra-2016-2017-stuttgart/Vorlesung-20.pdf
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Module categories of finite-dimensional algebras over fields give the most im-
portant examples of length categories and we will now introduce some terminology
to capture their additional structure.

Definition 3.3.10. A locally finite category over a field 𝐾 is a 𝐾-linear
length category 𝒞 such that Hom𝒞(𝑋,𝑌 ) is a finite-dimensional 𝐾-vector space for
any 𝑋,𝑌 ∈ 𝒞. A finite category over 𝐾 is a category 𝒞 which is equivalent to
𝐴-mod for a finite-dimensional 𝐾-algebra 𝐴.

Note that a finite category over 𝐾 is 𝐾-linear (by transport of structure) and
locally finite. One can give an internal characterization of finite categories, see [4]
for more details.

Lemma 3.3.11 (Schur’s lemma). Let 𝒞 be an abelian category.
(1) If 𝑆, 𝑇 ∈ 𝒞 are non-isomorphic simple objects, then Hom𝒞(𝑆, 𝑇 ) = 0.
(2) If 𝑆 ∈ 𝒞 is simple, then End𝒞(𝑆) is a division ring, i.e. every non-zero

element is invertible.

Proof. Assume that 𝑆 and 𝑇 are simple objects. Let 𝑓 : 𝑆 → 𝑇 be a non-
zero morphism. Note that Im(𝑓) is a subobject of 𝑇 . Since 𝑓 is non-zero and 𝑇
is simple, we must have Im(𝑓) = 𝑇 . Similarly, it follows that Ker(𝑓) = 0 and
therefore 𝑓 is already an isomorphism. Hence, if 𝑆 and 𝑇 are non-isomorphic, then
Hom𝒞(𝑆, 𝑇 ) = 0. Moreover, End𝒞(𝑆) is a division ring. �

Corollary 3.3.12. If 𝒞 is a locally finite 𝐾-linear abelian category over an
algebraically closed field 𝐾, then we have End𝒞(𝑆) = 𝐾 for any simple object 𝑆 ∈ 𝒞.

Proof. By Lemma 3.3.11 we know that End𝒞(𝑆) is a division algebra over 𝐾,
and the locally finiteness assumption implies that this algebra is of finite-dimension
over 𝐾. Since 𝐾 is algebraically closed, there are no finite-dimensional division
algebras over 𝐾 except 𝐾 itself. Maybe you don’t know this fact, so let’s prove it.
Let 𝐷 be a finite-dimensional division algebra over 𝐾. Let 𝑥 ∈ 𝐷. Then the powers
of 𝑥 are linearly dependent over 𝐾 since 𝐷 is finite-dimensional. Hence, there is a
polynomial

𝑓 = 𝑋𝑛 + 𝑐1𝑋
𝑛−1 + . . .+ 𝑐𝑛 ∈ 𝐾[𝑋] (3.79)

with 𝑓(𝑥) = 0. We assume that 𝑓 is of minimal degree with this property. Since 𝐾
is algebraically closed, 𝑓 has a zero 𝜆 in 𝐾 and we can write 𝑓 = (𝑋 − 𝜆) · 𝑔 for
𝑔 ∈ 𝐾[𝑋] of degree 𝑛−1. We have 0 = 𝑓(𝑥) = (𝑥−𝜆) ·𝑔(𝑥) and therefore 𝑥−𝜆 = 0
or 𝑔(𝑥) = 0. But 𝑓 was of minimal degree with the property that 𝑓(𝑥) = 0. Hence,
𝑔(𝑥) ̸= 0 and we must have 𝑥−𝜆 = 0, i.e. 𝑥 = 𝜆 ∈ 𝐾. This shows that 𝐷 = 𝐾. �

3.4. Semisimple categories

Let’s come back to the special case where objects do not just have a composition
series but even are a direct sum of simple objects.

Definition 3.4.1. Let 𝒞 be an abelian category. An object 𝑋 ∈ 𝒞 is semisim-
ple if it is isomorphic to a finite direct sum of simple objects, i.e.

𝑋 ≃
⨁︁
𝑆∈𝒮

𝑆 , (3.80)

where 𝒮 is a finite set of simple objects in 𝒞. A semisimple category is an abelian
category in which every object is semisimple.
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Example 3.4.2. The category 𝐾-vec is semisimple.

We would really like the direct sum decomposition of a semisimple object to be
unique up to permutation of the summands. This is not clear a priori. But from a
decomposition as in (3.80) we obtain a composition series of 𝑋 as follows. Choose a
numbering 𝒮 = {𝑆1, . . . , 𝑆𝑛} of the simple objects in 𝒮. For each 𝑖 = 1, . . . , 𝑛 define

𝑋𝑖 :=

𝑖⨁︁
𝑗=1

𝑆𝑗 . (3.81)

Then

0 = 𝑋0 < 𝑋1 < . . . < 𝑋𝑛 = 𝑋 (3.82)

is a composition series with quotients

𝑋𝑖/𝑋𝑖−1 ≃ 𝑆𝑖 . (3.83)

The Jordan–Hölder theorem now implies that the 𝑆𝑖 are unique up to permutation,
and consequently the direct sum decomposition of a semisimple object is unique up
to permutation of the summands.

What are examples of semisimple categories away from the trivial example
𝐾-vec? Here’s a fantastic classical theorem.

Theorem 3.4.3 (Maschke’s theorem). Let 𝐾 be a field and let 𝐺 be a finite
group. The category rep𝐾(𝐺) is semisimple if and only if the characteristic of 𝐾
does not divide the order of 𝐺.

Proof. Assume that the characteristic of 𝐾 does not divide the order of 𝐺.
Let 𝜌 : 𝐺→ GL(𝑉 ) be a finite-dimensional representation of 𝐺. We will show that
any subrepresentation 𝑈 of 𝑉 has a complement as a representation, i.e. there is
a subrepresentation 𝑈 ′ of 𝑉 such that 𝑉 = 𝑈 ⊕ 𝑈 ′. Since 𝑉 is finite-dimensional,
we can then inductively decompose 𝑉 into a direct sum of simple representations.

To prove the claim, let 𝑈 ′′ be a complement of 𝑈 in 𝑉 as a vector space (this
certainly exists). Let 𝑝 : 𝑉 → 𝑉 be the linear map which is the identity on 𝑈 and
which is zero on 𝑈 ′′. Define a new map 𝑝′ : 𝑉 → 𝑉 by

𝑝′ :=
1

|𝐺|
∑︁
𝑔∈𝐺

𝜌(𝑔) ∘ 𝑝 ∘ 𝜌(𝑔−1)

and let

𝑈 ′ := Ker(𝑝′) .

Note that 𝑝′ is well-defined since by assumption |𝐺| is a non-zero element in 𝐾
and therefore we can form 1

|𝐺| . We claim that 𝑈 ′ is a complement of 𝑈 in 𝑉 as a
representation. Since 𝑈 is a subrepresentation, it is stable under all the 𝜌(𝑔), and
since 𝑝 is the identity on 𝑈 , it follows that 𝑝′ is the identity on 𝑈 as well. Moreover,
𝑝′ maps 𝑉 into 𝑈 . Hence, (𝑝′)2 = 𝑝′, i.e. 𝑝′ is a projection and therefore 𝑉 = 𝑈⊕𝑈 ′

as vector spaces. It remains to show that 𝑈 ′ is stable under the 𝜌(𝑔). For 𝑢′ ∈ 𝑈 ′
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we have

𝑝′ ∘ 𝜌(𝑔)(𝑢′) =
1

|𝐺|
∑︁
ℎ∈𝐺

𝜌(ℎ) ∘ 𝑝 ∘ 𝜌(ℎ−1) ∘ 𝜌(𝑔)(𝑢′)

=
1

|𝐺|
∑︁
ℎ∈𝐺

𝜌(ℎ) ∘ 𝑝 ∘ 𝜌(ℎ−1𝑔)(𝑢′)

=
1

|𝐺|
∑︁
ℎ∈𝐺

𝜌(𝑔ℎ) ∘ 𝑝 ∘ 𝜌(ℎ−1)(𝑢′)

= 𝜌(𝑔) ∘ 1

|𝐺|
∑︁
ℎ∈𝐺

𝜌(ℎ) ∘ 𝑝 ∘ 𝜌(ℎ−1)(𝑢′)

= 𝜌(𝑔) ∘ 𝑝′(𝑢′) = 0 ,

i.e. 𝜌(𝑔)(𝑢′) ∈ 𝑈 ′.
We still need to prove the converse of the statement in the theorem, i.e. if the

characteristic of 𝐾 divides the order of 𝐺, then rep𝐾(𝐺) is not semisimple. It will
be more convenient to work with 𝐾𝐺-modules here. We define a map

𝜀 : 𝐾𝐺 → 𝐾∑︀
𝑔∈𝐺 𝛼𝑔𝑔 ↦→

∑︀
𝑔∈𝐺 𝛼𝑔 .

(3.84)

The map 𝜀 is a 𝐾-algebra morphism and therefore the kernel 𝐼 of 𝜀 is a 𝐾𝐺-
submodule of 𝐾𝐺. We will show that 𝐼 ∩ 𝑈 ̸= ∅ for any proper submodule 𝑈 of
𝐾𝐺. This implies that 𝐼 does not have a complement in 𝐾𝐺 and therefore the
𝐾𝐺-module 𝐾𝐺 is not semisimple. So, let 𝑢 =

∑︀
𝑔∈𝐺 𝛼𝑔𝑔 be a non-zero element

of 𝑈 . If 𝜀(𝑢) = 0, then 𝑢 ∈ 𝐼 by definition and so the claim holds. Otherwise, let
𝛾 :=

∑︀
𝑔∈𝐺 𝑔 ∈ 𝐾𝐺. Since 𝑈 is a 𝐾𝐺-submodule, we have 𝛾𝑢 ∈ 𝑈 . Moreover,

𝛾𝑢 =

⎛⎝∑︁
𝑔∈𝐺

𝑔

⎞⎠⎛⎝∑︁
𝑔∈𝐺

𝛼𝑔𝑔

⎞⎠ =
∑︁
𝑔∈𝐺

(︃∑︁
ℎ∈𝐺

𝛼ℎℎ

)︃
𝑔 = 𝜀(𝑢)𝛾 .

This shows on the one hand that 𝛾𝑢 ̸= 0 and on the other hand

𝜀(𝛾𝑢) = 𝜀(𝜀(𝑢)𝛾) = 𝜀(𝑢)|𝐺| = 0 ,

i.e. 0 ̸= 𝛾𝑢 ∈ 𝐼 ∩ 𝑈 . �

3.5. Grothendieck groups

Throughout this section, we assume that 𝒞 is an essentially small category. The
collection [𝒞] of isomorphism classes of 𝒞 thus forms a set.

If 𝒞 is (semi)additive, then we know from Exercise 3.1.22 that [𝒞] becomes a
commutative monoid with respect to the addition

[𝑋] + [𝑌 ] := [𝑋 ⊕ 𝑌 ] . (3.85)

By Example 2.5.8 we can turn any commutative monoid 𝑀 into an abelian group
by taking the Grothendieck group 𝐺(𝑀). The abelian group

[𝒞]⊕ := 𝐺(([𝒞],+)) (3.86)

is called the split Grothendieck group of 𝒞. Alternatively, [𝒞]⊕ can be described
as the quotient of the free abelian group (i.e. free Z-module) Z[𝒞] with basis [𝒞] by
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the subgroup generated by the relation (3.85)

[𝑋]− [𝑋 ⊕ 𝑌 ] + [𝑌 ] = 0 . (3.87)

If 𝒞 is abelian, there’s another point of view on the split Grothendieck group
which also explains the prefix “split”. First, note that for any two objects 𝑋 and 𝑌
of 𝒞 we have a canonical short exact sequence

0 𝑋 𝑋 ⊕ 𝑌 𝑌 0 ,i p (3.88)

where i : 𝑋 → 𝑋 ⊕ 𝑌 is the inclusion and p: 𝑋 ⊕ 𝑌 → 𝑌 is the projection. We call
a short exact sequence

0 𝑋 𝑍 𝑌 0 (3.89)

split if it is isomorphic to the short exact sequence (3.88), i.e. there is an isomor-
phism 𝑓 : 𝑍 → 𝑋 ⊕ 𝑌 making the diagram

0 𝑋 𝑍 𝑌 0

0 𝑋 𝑋 ⊕ 𝑌 𝑌 0

𝑓≃

i p

(3.90)

commutative. Now, it’s clear that the split Grothendieck group [𝒞]⊕ is isomorphic
to the quotient Z[𝒞] by the subgroup generated by the relation

[𝑋]− [𝑍] + [𝑌 ] = 0 (3.91)

whenever there is a split short exact sequence like (3.89).

Instead of considering only split short exact sequences, it makes sense to con-
sider all short exact sequences as well. The quotient of Z[𝒞] by the subgroup gen-
erated by the relation

[𝑋]− [𝑍] + [𝑌 ] = 0 (3.92)
whenever there is a (not necessarily split) short exact sequence

0 𝑋 𝑍 𝑌 0 (3.93)

is called the (abelian) Grothendieck group of 𝒞 and is here denoted by [𝒞]ab.
Clearly, [𝒞]ab is a quotient of [𝒞]⊕.

We know from Example 2.5.8 that the split Grothendieck group [𝒞]⊕ satisfies
a universal property, namely the canonical map [𝒞]→ [𝒞]⊕ is the universal monoid
morphism into an abelian group in the sense that if 𝑓 : [𝒞]→ 𝐺 is any other monoid
morphism into an abelian group 𝐺, then it uniquely factors through [𝒞]→ [𝒞]⊕, i.e.
there is a commutative diagram

[𝒞]⊕ 𝐺

[𝒞]

∃!𝑓

𝑓
(3.94)

Does the Grothendieck group [𝒞]ab satisfy a universal property as well? Yes: it’s
universal for additive functions on 𝒞. These are maps

𝜒 : 𝒞 → 𝐺 (3.95)
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into an abelian group 𝐺 such that

𝜒(𝑋)− 𝜒(𝑍) + 𝜒(𝑌 ) = 0 (3.96)

whenever there is a short exact sequence

0 𝑋 𝑍 𝑌 0 . (3.97)

The natural map 𝒞 → [𝒞]ab, 𝑋 ↦→ [𝑋], is additive, and it is the universal addi-
tive function since any other additive function 𝜒 : 𝒞 → 𝐺 clearly uniquely factors
through 𝒞 → [𝒞]ab, i.e. there is a commutative diagram

[𝒞]ab 𝐺

𝒞

∃!𝜒̃

𝜒
(3.98)

In general, the Grothendieck group will be difficult to describe. But in case of
a length category we can give a very explicit description which reflects that the
category is built from simple objects.

Theorem 3.5.1. Let 𝒞 be an essentially small length category and let {[𝑆𝑖]}𝑖∈𝐼
be the set of isomorphism classes of simple objects. Then the map

𝒞 → Z𝐼
𝑋 ↦→

∑︀
𝑖∈𝐼 [𝑋 : 𝑆𝑖][𝑆𝑖]

(3.99)

is an additive function and induces an isomorphism

[𝒞]ab ≃ Z𝐼 , (3.100)

i.e. [𝒞]ab is the free abelian group with basis the isomorphism classes of simple
objects in 𝒞.

For the proof we’ll need a general lemma about composition series.

Lemma 3.5.2. Let 𝒞 be an abelian category and let 𝑋 ∈ 𝒞 be an object of finite
length. If 𝑈 is a subobject of 𝑋, then 𝑋 has a composition series in which 𝑈 appears
as a term.

Proof. Let 0 = 𝑋0 < 𝑋1 < . . . < 𝑋𝑛 = 𝑋 be a composition series of 𝑋.
Intersecting with 𝑈 yields a chain

0 = 𝑈 ∩𝑋0 ≤ 𝑈 ∩𝑋1 ≤ . . . ≤ 𝑈 ∩𝑋𝑛 = 𝑈 (3.101)

and taking the union with 𝑈 yields a chain

𝑈 = 𝑈 ∪𝑋0 ≤ 𝑈 ∪𝑋1 ≤ . . . ≤ 𝑈 ∪𝑋𝑛 = 𝑋 . (3.102)

Note that the inequalities are not necessarily strict. Nonetheless, we claim that
all quotients in the chains are either simple or 0 so that by removing superfluous
terms, the combination of the two series yields a composition series of 𝑋 in which
𝑈 appears as a term.

The kernel of the map𝑋𝑖−1 → 𝑋𝑖 → 𝑋𝑖/(𝑈∩𝑋𝑖) is 𝑈∩𝑋𝑖−1. Hence,𝑋𝑖−1/(𝑈∩
𝑋𝑖−1) is a subobject of𝑋𝑖/(𝑈∩𝑋𝑖). We thus get the following commutative diagram
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of canonical maps with exact rows and columns:

0 0

0 𝑈 ∩𝑋𝑖−1 𝑈 ∩𝑋𝑖 (𝑈 ∩𝑋𝑖)/(𝑈 ∩𝑋𝑖−1) 0

0 𝑋𝑖−1 𝑋𝑖 𝑋𝑖/𝑋𝑖−1 0

0 𝑋𝑖−1/(𝑈 ∩𝑋𝑖−1) 𝑋𝑖/(𝑈 ∩𝑋𝑖) (𝑈 ∪𝑋𝑖)/(𝑈 ∪𝑋𝑖−1) 0

0 0

(3.103)
If you turn around the diagram by 90 degrees and mirror, you see that we can apply
the nine lemma (Exercise 3.2.29) to deduce that there is an exact sequence

0 (𝑈 ∩𝑋𝑖)/(𝑈 ∩𝑋𝑖−1) 𝑋𝑖/𝑋𝑖−1 (𝑈 ∪𝑋𝑖)/(𝑈 ∪𝑋𝑖−1) 0 .

(3.104)
This shows that (𝑈 ∩ 𝑋𝑖)/(𝑈 ∩ 𝑋𝑖−1) is a subobject of 𝑋𝑖/𝑋𝑖−1 and that (𝑈 ∪
𝑋𝑖)/(𝑈 ∪𝑋𝑖−1) is a quotient of 𝑋𝑖/𝑋𝑖−1. Since 𝑋𝑖/𝑋𝑖−1 is simple, it follows that
these two objects are either simple or zero. This is exactly what we claimed. �

Proof of Theorem 3.5.1. For each 𝑖 ∈ 𝐼 let 𝜒𝑖 : 𝒞 → Z be the map 𝑋 ↦→
[𝑋 : 𝑆𝑖]. We want to show that 𝜒𝑖 is additive. Let 0 → 𝑋 → 𝑌 → 𝑍 be an exact
sequence. Then 𝑍 ≃ 𝑌/𝑋. By Lemma 3.5.2 we can find a composition series of 𝑌
of the form

0 = 𝑌0 < 𝑌1 < . . . < 𝑌𝑚 = 𝑋 < 𝑌𝑚+1 < . . . < 𝑌𝑛 = 𝑌 . (3.105)

For 𝑗 > 𝑚 we have (𝑌𝑗/𝑋)/(𝑌𝑗−1/𝑋) ≃ 𝑌𝑗/𝑌𝑗−1, which is simple. Hence,

0 = 𝑌𝑚/𝑋 < 𝑌𝑚+1/𝑋 < . . . < 𝑌𝑛/𝑋 = 𝑌/𝑋 (3.106)

is a composition series of 𝑌/𝑋. It is now clear that 𝜒𝑖(𝑌 ) = 𝜒𝑖(𝑋) + 𝜒𝑖(𝑍), i.e. 𝜒𝑖
is additive. Combining the 𝜒𝑖 we get an additive function

𝒞 → Z𝐼
𝑋 ↦→

∑︀
𝑖∈𝐼 [𝑋 : 𝑆𝑖][𝑆𝑖] .

(3.107)

Let 𝜒 denote the induced group morphism [𝒞]ab → Z𝐼 . We need to show that this
is an isomorphism. We can give an explicit inverse, namely the map

𝜂 : Z𝐼 → [𝒞]ab
[𝑆𝑖] ↦→ [𝑆𝑖] .

(3.108)

First note that since Z𝐼 is free with basis {[𝑆𝑖]}𝑖∈𝐼 , we indeed get a well-defined
group morphism from this. Now, it’s clear that 𝜒 ∘ 𝜂([𝑆𝑖]) = [𝑆𝑖], hence 𝜒 ∘ 𝜂 = id.
To prove that 𝜂 ∘ 𝜒 = id, we need to show that for any 𝑋 ∈ 𝒞 we have

[𝑋] =
∑︁
𝑖∈𝐼

[𝑋 : 𝑆𝑖][𝑆𝑖] (3.109)
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in [𝒞]ab. But this is easily obtained inductively from a composition series of 𝑋.
Namely, if 0 = 𝑋0 < . . . < 𝑋𝑛 is a composition series, we have an exact sequence
0 → 𝑋𝑛−1 → 𝑋𝑛 → 𝑆𝑛 → 0, where 𝑆𝑛 := 𝑋𝑛/𝑋𝑛−1 is simple. Hence, [𝑋] =
[𝑋𝑛−1] + [𝑆𝑛] in [𝒞]ab. Now, you continue like this. �



CHAPTER 4

Tensor categories

The theory of abelian categories in Chapter 3 was motivated from the point of
view of finding categorical formulations of constructions that we know from sets,
vector spaces, etc. On the other hand, you can look at the concept of sets and say
that this is boring because the elements of a set can’t talk to each other. You thus
want to lift this concept to a higher level where you replace elements by objects
which can talk to each other via morphisms—i.e. you replace sets by categories
and a map of sets by a functor between categories. You have thus obtained a
categorification of the concept of sets! Once you have categorified the concept,
you can ask for a categorification of a given set 𝑋. What does this mean? It
means, you want to find a (essentially small) category 𝒞 such that when you forget
about morphisms, you get back 𝑋. More precisely, there should be a—somewhat
natural—bijection [𝒞] ≃ 𝑋, where [𝒞] is the set of isomorphism classes of 𝒞. Sim-
ilarly, you can ask about a categorification of a map 𝑓 : 𝑋 → 𝑌 , which should
be a functor 𝐹 : 𝒞 → 𝒞′ such that the induced map [𝐹 ] : [𝒞] → [𝒞′] between iso-
morphism classes gives back 𝑓 . The process of taking the isomorphism classes is
called decategorification. Depending on the context, decategorification may in-
volve some further natural constructions—like taking the Grothendieck group or
the Euler characteristic—but all in all this is a well-defined process. But the other
way around—categorification—is just an idea and there’s nothing well-defined and
unique about it!

Cat 𝒞 𝐹 : 𝒞 → 𝒞′

Set [𝒞] [𝐹 ] : [𝒞]→ [𝒞′]

decategorificationcategorification

Figure 4.1. Categorification and decategorification.

What’s the point of this? The point is that sometimes, when you want to prove
something about 𝑋, things may become easier when you know that 𝑋 actually
comes from a category 𝒞 because now you can suddenly use arguments with mor-
phisms and maybe your question about 𝑋 is actually implied by something you
can prove about objects and morphisms in 𝒞. The idea is that you lift things to
a higher level and hope that suddenly you can see things more clearly. There is
no right and wrong in categorification—you know you’re on the right track if you
can actually prove something useful with a categorification you constructed. That’s
why one says:

“Categorification is an art, not a functor.”1

1I actually don’t know who first said this. Maybe Ben Webster!?

63
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I claim that all of you have used categorification already without thinking about
it. Suppose you notice the identity

𝑛!

𝑘!(𝑛− 𝑘)!
=

(𝑛− 1)!

(𝑘 − 1)!(𝑛− 𝑘)!
+

(𝑛− 1)!

𝑘!(𝑛− 1− 𝑘)!
(4.1)

for natural numbers 𝑘, 𝑛. How do you prove this? Maybe you notice that 𝑛!
𝑘!(𝑛−𝑘)! is

actually the number
(︀
𝑛
𝑘

)︀
of 𝑘-element subsets of an 𝑛-element set—more categori-

cally, it’s the number of monomorphisms from a 𝑘-element set to an 𝑛-element set.
From this point of view, the identity above is actually quite easy to prove. Namely,
when fixing an element 𝑥 of your 𝑛-element set 𝑋 then 𝑘-element subsets of 𝑋 can
be separated into two cases: those containing 𝑥 and those not containing 𝑥. These
are precisely

(︀
𝑛−1
𝑘−1

)︀
+
(︀
𝑛−1
𝑘

)︀
choices, and this is exactly the identity above. What we

have used in this proof was a categorification of the natural numbers N, namely the
category set of finite sets! This is admittedly an extremely trivial example but be-
lieve me there are (e.g. combinatorial) identities which people were not able to prove
directly but managed to do so by using an appropriate categorification. One of the
most striking examples is Khovanov’s categorification of the Jones knot polynomial
in 2000, see [6].

But already the philosophical idea of categorification is really helpful. For ex-
ample, after realizing that categories are a categorification of sets, you can ask for
any concept of (algebraic) structures how to categorify it, and then for a given
example you can try to find categorifications. Can you guess what a monoidal cat-
egory is probably going to be? Can you imagine a categorification of the monoid
(N, ·)?

categories additive categories/
abelian categories monoidal categories tensor categories

sets abelian groups monoids rings

Figure 4.2. Categorifications of basic algebraic structures.

4.1. Monoidal categories

This will eventually be continued. For now, we’ll move to [4] for which you have
been well-prepared.

Now is not the time for fear. That comes later. — Bane
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axiom
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bicomplete., 33
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categorification, 63
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category, 1, 2

of sets, 2
chain complex, 39
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proper, 10

co, 16
co-cone, 31
cochain complex, 39
cocomplete, 33
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codiagonal morphism, 36
codomain, 2
cohomology object, 52
cokernel, 42
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commutator subgroup, 24
complement, 57
complete, 33
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composition, 2
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comprehension

restricted, 9
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concrete, 23
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coproduct, 30
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counit-unit equations, 26
covariant functor, 15

decategorification, 63
diagonal morphism, 36
diagram, 4, 31

commutative, 4
diffeomorphisms, 6
differentials, 39
direct sum, 35
discrete, 31
domain, 2
dual

vector space, 15
duality, 20

embedding, 21
endomorphism, 6
epimorphism, 7
equivalence, 19, 20
equivalent, 20, 53
essentially small, 11
essentially surjective, 20
exact, 47
exact at position 𝑖, 47
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finite length, 55
forget functor, 13
free category, 23
free object, 23
Freyd–Mitchell embedding theorem, 48
full image, 21
functor, 13

composition, 17
contravariant, 15
faithful, 20
full, 20
fully faithful, 20

functor category, 19

general linear group, 14
graded object, 39
Grothendieck group, 25, 59
Grothendieck universe, 10
group ring, 18

has ℐ-limits, 33
hierarchy, 10
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Hom-functor, 14
homeomorphisms, 6
homological algebra, 52
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homomorphism, 1, 2
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image, 21, 47
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infimum, 51
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isomorphism, 1, 6, 17, 19
isomorphism classes, 11

Jordan–Hölder theorem, 53

kernel, 42
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left adjoint, 23
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Maschke’s theorem, 57
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module, 3
monoid, 3

monomorphism, 7
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multiplicity, 53
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natural transformation, 19
nine lemma, 50
noetherian, 43
normal, 46

object, 2
opposite category, 16

pointed, 35
preabelian, 43
preadditive, 37
preserves, 40
product, 22, 30
projection, 30
pullback

of functions, 15

quiver, 4
morphism, 4
underlying, 5

quotient, 46
quotient object, 45

reflect, 15
relations, 3
representable, 21
representation, 4
right adjoint, 23
ring, 3
Russell’s paradox, 8

scalar restriction, 48
Schur’s lemma, 56
second isomorphism theorem, 52
semiadditive, 35
semisimple, 53, 56
sequence, 47
set theory

axiomatic, 9
MK, 10
naive, 9
NBG, 10
TG, 10
ZF, 9
ZFC, 9

shape, 31
short exact sequence, 47
simple, 53
singular chain complex, 52
singular homology, 52
size restriction, 17
skeletal, 21
skeleton, 21
small, 10

locally, 10
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source, 2, 4
split, 59
split Grothendieck group, 58
subcategory, 5

full, 5
subobject, 45
supremum, 51

target, 2, 4
terminal, 34
third isomorphism theorem, 48

unit, 26
universal cone, 31

vertices, 4

weak inverse, 20
well-powered, 49

Yoneda lemma, 21

zero morphism, 34
zero object, 34


	Introduction
	Acknowledgments

	Chapter 1. Categories
	1.1. Definition and basic examples
	1.2. Subcategories
	1.3. Special morphisms
	1.4. Set-theoretic issues
	1.5. Smallness

	Chapter 2. Functors
	2.1. Definition and basic examples
	2.2. The co-world
	2.3. The category of categories
	2.4. Equivalence of categories and morphisms of functors
	2.5. Adjoint functors

	Chapter 3. Abelian categories
	3.1. Additive categories
	3.2. Abelian categories
	3.3. Finite categories
	3.4. Semisimple categories
	3.5. Grothendieck groups

	Chapter 4. Tensor categories
	4.1. Monoidal categories

	References
	Index

