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Constant presheaf is not a sheaf

If A is an abelian group, the constant presheaf on a space X is the
presheaf F with F (U) = A for all U. This is not a sheaf since the
value of a sheaf on the empty set needs to be the zero group. Gener-
ally, the problem is that if U1 and U2 are two disjoint open subsets,
then taking constant functions Ci on U1 and U2 with different value
there is no constant function C on U1 ∪ U2 with both C|U1 = C1 and
C|U2 = C2. The sheafification of F is the sheaf A of locally constant
functions on X, which eliminates this problem.

Presheaf tensor product is not a sheaf

If F and G are two sheaves, the presheaf tensor product P(U) =

F (U)⊗Z G(U) is in general not a sheaf. Here is a counterexample. This is from https://math.

stackexchange.com/q/1488296/262462Let X be a topological space and let F = G = Z be the sheaf of
locally constant functions X → Z. Since locally constant functions
are determined by their (constant) values on the connected compo-
nents, we have F (U) = ZnU , where nU is the number of connected
components of U. Hence,

P(U) = F (U)⊗Z G(U) = ZnU ⊗Z ZnU ≃ Zn2
U ,

the latter isomorphism following from the fact that the tensor prod-
uct of two free abelian groups is free of rank equal to the product
of the ranks of the factors. In particular, if U is connected, then
P(U) = Z ⊗Z Z = Z. Suppose that P is a sheaf. If U1, . . . , UnU are
the connected components of U, then since connected components
are disjoint, the sheaf axioms force

P(U) = P(U1)⊕ . . . ⊕P(UnU ) = Z ⊕ . . . ⊕ Z = ZnU .

If nU > 1, then ZnU and Zn2
U are not isomorphic since they are two

free abelian groups of different ranks nU and n2
U .

Presheaf quotient is not a sheaf

If G is a sheaf and F is a subsheaf of G, the presheaf quotient P(U) =

G(U)/F (U) is in general not a sheaf. Here is a counterexample. Let This is from https://math.

stackexchange.com/q/1466781S1 be the unit circle and consider

p : R → S1 , t 7→ (cos(2πt), sin(2πt)) .
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This map is a covering map. Let G be the sheaf of continuous func-
tions S1 → R and let F be the subsheaf of locally constant functions
S1 → R. We will now cover S1 by two overlapping open subsets
where one part will involve another sheet of the covering which will
cause a problem: let U1 be the image of the interval I1 := (0, 3

4 ), giv-
ing the first three quarters of the circle, and let U2 be the image of the
interval I2 := ( 1

2 , 1 1
4 ), giving the second half plus the first quarter.

The overlap U1 ∩ U2 is the disjoint union V1 ⨿ V2 with V1 being the
first quarter and V2 being the third quarter.

The restriction p|Ii : Ii → Ui has a continuous inverse fi : Ui → Ii.
So, fi ∈ G(Ui). We have f2|V2 = f1|V2 but f2|V1 = f1|V1 + 1. Hence, f1

and f2 do not agree on the overlap U1 ∩ U2. But the difference is the
locally constant map on U1 ∩ U2 which is 0 on V2 and 1 on V1, so

f1|U1∩U2 ≡ f2|U1∩U2 mod F (U1 ∩ U2) .

Suppose that P is a sheaf. Then the above equation implies that there
is a (unique) function f ∈ G(S1) such that f |Ui ≡ fi mod F (Ui). This
means there is Ci ∈ F (Ui) such that

f |Ui = fi + Ci .

Note that since Ui is connected, the function Ci is constant on all
of Ui. We now restrict the previous equation separately to V1 and V2.
On the one hand, we have

f1|V1 +C1 = f |V1 = f2|V1 +C2 =⇒ f1|V1 +V1 = f1|V1 + 1+C2 =⇒ C1 = 1+C2 .

On the other hand, we have

f1|V2 +C1 = f |V2 = f2|V2 +C2 =⇒ f1|V2 +C1 = f1|V2 +C2 =⇒ C1 = C2 .

This is a contradiction.

Surjective sheaf morphism is not surjective on open sets

If φ : F → G is a surjective morphism of sheaves on a space X, mean-
ing that φx : Fx → Gx is surjective for all x ∈ X, then φ(U) : F (U) →
G(U) is not surjective in general. Here is a counterexample. This is from https://math.

stackexchange.com/q/58306Let X = C equipped with the Zariski topology. Then all open
subsets of U have non-empty intersection, in particular any open sub-
set is connected. The constant sheaf F = Z on X thus has sections
F (U) = Z for any open subset U. For a point x ∈ X let Gx be the
skyscraper sheaf at x with value Z. Recall that this is defined by

Gx(U) =

{
Z if x ∈ U
0 otherwise
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with the obvious restriction maps. The stalk Gx
y of Gx in a point y is

Gx
y =

{
Z if x = y
0 otherwise.

We have a sheaf morphism φx : F → Gx where φ(U) : F (U) →
Gx(U) is the identity if x ∈ U and is the zero map otherwise.

Now, pick two distinct points P ̸= Q in X. Let G = GP ⊕ GQ. We
then have the sheaf morphism φ : F → G with φ(U) = φP(U) ⊕
φQ(U). Since P and Q are distinct points, the stalks of G are

Gx =

{
Z if x = P, Q
0 otherwise.

This shows that φx is surjective for any x ∈ X, so φ is a surjective
sheaf moprhism. But φ is not surjective on open sets since on U = X
we have φ(X) : Z → Z ⊕ Z, z 7→ (z, z), which is not surjective.


	Constant presheaf is not a sheaf
	Presheaf tensor product is not a sheaf
	Presheaf quotient is not a sheaf
	Surjective sheaf morphism is not surjective on open sets

