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Introduction
Symplectic singularities are intriguing mathematical

objects that were introduced by Beauville [1] in 2000.
They are already interesting from a purely geometric
perspective but an especially fascinating feature is that
they naturally arise in representation theory (Lie theory)
as well where they established a fruitful link between
the commutative world of algebraic geometry and the
noncommutative world of representation theory.

In this survey I would like to highlight some com-
putational aspects that arise in the context of symplectic
singularities. This is part of recent joint work [6] with
Cédric Bonnafé. The computational approach allowed
us to solve several mathematical problems which are
probably hard (or impossible) to tackle by purely the-
oretical means. There are still many more questions in
this area that may be attacked by computational methods
and I invite everyone to join in.

Symplectic singularities
Throughout, we work over the complex numbers.

I already want to note, however, that all the relevant ob-
jects can also be realized over some “sufficiently large”
number field (a cyclotomic field actually) so that com-
putations in computer algebra systems are possible. All
our vector spaces will be finite-dimensional.

Symplectic vector spaces

A symplectic form on a vector space V is a bilin-
ear form ω : V × V → C which is skew-symmetric, i.e.
ω(u, v) = −ω(v, u), and which is nondegenerate, i.e.
ω(u, v) = 0 for all v implies u = 0. The Gram matrix
of ω with respect to some basis (vi)mi=1 of V is defined
by

Jij = ω(vi, vj) , (1)

so ω(v, u) = vJuT, where u,v denote the coordinate
vectors of u, v in the basis. The matrix J is skew-
symmetric, i.e. JT = −J , and invertible. Conversely,

any skew-symmetric invertible matrix defines a sym-
plectic form on V via (1). Note that

det(J) = det(JT ) = det(−J) = (−1)n det(J)

and this can only be true if n is even. Hence, a symplec-
tic form only exists on an even-dimensional space.

The following will be our main example of a sym-
plectic form. Let h be any vector space (the symbol h
comes from the Lie-theoretic context where this exam-
ple usually comes from). We denote by h∗ the dual vec-
tor space of h, i.e. the space of linear maps h → C. Then
on V = h⊕h∗ there is a natural symplectic form defined
by

ω((v, f), (v′, f ′)) = f ′(v)− f(v′) . (2)

If (yi)ni=1 is a basis of h with dual basis (xi)ni=1 then the
Gram matrix of ω in the basis {y1, . . . , yn, x1, . . . , xn}
is

J =

(
0 In

−In 0

)
. (3)

This example is in fact universal: a variant of the
Gram–Schmidt process shows that after an appropriate
change of basis the Gram matrix of any symplectic form
is given by (3).

Poisson structure

Why care about symplectic structures? When con-
sidering the vector space h⊕ h∗ as an algebraic variety,
its ring C[h ⊕ h∗] of polynomial functions is by defini-
tion the symmetric algebra of the dual h∗ ⊕ h of h⊕ h∗,
and after our choice of basis this is simply the polyno-
mial ring A = C[x1, . . . , xn, y1, . . . yn]. For polynomi-
als f, g ∈ A define

{f, g} =

n∑
i=1

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
. (4)

In particular,

{xi, xj} = 0 = {yi, yj} , {xi, yj} = δij . (5)
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You can check that {·, ·} is a Lie bracket on A that addi-
tionally satisfies the Leibniz rule

{fg, h} = {f, h}g + f{g, h} . (6)

Such a Lie bracket is called a Poisson bracket and A is
called a Poisson algebra.

One can deduce the Poisson bracket also in a
coordinate-free manner from a symplectic form (see
[14, §1.11]). Poisson brackets are important in physics
because they are the foundation of the Hamiltonian
equations of motion.

Smooth symplectic varieties

In general, the configuration space of a mechanical
system is not flat. Hence, one considers symplectic and
Poisson structures on manifolds. Algebraists consider
them on varieties.

Let X be a smooth variety. In each point p ∈ X
we have the tangent space TpX . Since X is smooth,
the dimension of TpX is equal to the dimension of X
as a variety. Intuitively, a symplectic form on X should
be a “smoothly varying” family (ωp)p∈X of symplectic
forms ωp on TpX . But this family should come from
something global, so the correct definition of a symplec-
tic form on X is a closed holomorphic 2-form ω on X
such that the induced form ωp on TpX is nondegener-
ate for all p ∈ X . Note that a 2-form is alternating by
definition so that the induced form ωp on TpX is indeed
symplectic. As in the flat case, a symplectic form ω on
X induces a Poisson bracket on C[X] (see [7, Theorem
1.2.7]). The closedness assumption on ω is needed to
prove the Jacobi identity. A smooth variety equipped
with a symplectic form is called a smooth symplectic
variety.

A vector space with a symplectic form is a smooth
symplectic variety. From the geometric perspective, our
main example h ⊕ h∗ is actually the cotangent bundle
T ∗h of h. This example globalizes: the cotangent bun-
dle T ∗X of any smooth variety X is a smooth symplec-
tic variety (see [7, Example 1.1.3]).

Symplectic varieties and symplectic singularities

If X has a singularity in a point p, then the dimen-
sion of TpX is larger than the dimension of X . Since the
smooth part Xsm of X is a non-empty open subset of X ,
the dimension of the tangent spaces is not constant on X
and therefore we cannot consider a “smoothly varying”
family of symplectic (and thus nondegenerate) forms on
the tangent spaces as in the smooth case.

What is a good extension of the notion of smooth
symplectic varieties to the singular world? Certainly,
we would want Xsm to carry a symplectic form ω as be-
fore. It also makes sense to assume that X is normal.
The extra ingredient making this into a good concept
is due to Beauville [1]: we require that for any reso-
lution π : Y → X of singularities (a proper birational
map with Y smooth) the pullback of ω to π−1(Xsm)
extends to a (possibly degenerate) holomorphic 2-form

on all of Y . We then say that X is a symplectic vari-
ety. A singularity of a variety is said to be symplectic
if it has an open neighborhood which is a symplectic
variety. Symplectic singularities are rational Gorenstein
(see [1, Proposition 1.3]).

The extra condition about the pullback of the form
just needs be tested for one resolution. A result by Flen-
ner [11] implies that it holds automatically if the singu-
lar locus is of codimension at least 4. Beauville adds:
“We chose to impose it in all cases in order to get uni-
form results.” Note that it is not assumed that the pull-
back extends to a nondegenerate (and thus symplectic)
form. In this case Y is a smooth symplectic variety and
π is called a symplectic resolution. In general, this does
not exist (see the references in the next section).

There are two main classes of examples of symplec-
tic singularities.

Example 1 First, we note that if G is a finite group
of linear automorphisms of a vector space V , then the
orbit space V/G has the structure of an algebraic va-
riety with coordinate ring being the ring C[V ]G of G-
invariant polynomial functions on V .

Now, suppose that V is symplectic with symplectic
form ω. The symplectic group Sp(V ) = Sp(V, ω) con-
sists of the linear automorphisms g of V which leave
ω invariant, i.e. ω(gv, gu) = ω(v, u). If G is a finite
subgroup of Sp(V ), then V/G is a symplectic variety
(see [1, Proposition 2.4]). The symplectic form on the
smooth locus of V/G is induced from ω. This example
globalizes: if X is a symplectic variety with symplectic
form ω and G is a finite group of automorphisms of X
leaving ω invariant, then X/G is a symplectic variety.

Note that Sp(V ) is contained in the special linear
group SL(V ). If V is two-dimensional, both groups are
equal and so the resulting symplectic singularities are
precisely the Kleinian singularities, which are classified
by Dynkin diagrams.

Example 2 Let g be a simple complex Lie algebra. Let
N be the nilpotent cone of g, i.e. the set of all nilpo-
tent elements of g. This is an irreducible variety (see
[9, 8.1.3]). The adjoint group G of g acts on N (see [8,
§1.2]). An orbit of this action is called a nilpotent orbit.
The normalization of the closure of a nilpotent orbit has
symplectic singularities (see [1, §2.6]). The symplectic
form on the smooth locus is a Kostant–Kirillov form.

Questions

There are many questions one can ask about sym-
plectic singularities. Are there other examples? Can we
classify them (up to isomorphism of analytic germs)?
When does a symplectic resolution exist? What can we
say about the birational geometry of a symplectic sin-
gularity in light of the minimal model program? How
is the representation theory of the group or Lie algebra
intertwined with the geometry?

This survey is not the right place to go into any of
this. I recommend as starting points the surveys [12, 14].
These are rather old now, however, and there was much
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progress in the meantime. I therefore also recommend
looking at the papers [3, 4] and the thesis [19].

Classifying symplectic singularities in general is
problematic because by Example 1 we can always take
a quotient by a finite group to produce new ones.
Beauville therefore considers symplectic singularities
with trivial local fundamental group to get rid of such
examples. In a simple complex Lie algebra there is a
unique non-zero minimal nilpotent orbit and its closure
has an isolated symplectic singularity which in case g
is not of type C has trivial local fundamental group [1,
Proposition 4.2]. Beauville asked in [1, §4.3] whether
there are further examples. This was unanswered for 20
years.

Recently, a new infinite family of isolated symplec-
tic singularities with trivial local fundamental group was
discovered by the group Bellamy, Bonnafé, Fu, Juteau,
Levy, and Sommers [5]. I will illustrate how one can
arrive at the smallest of the new examples by the com-
putational tools that I developed with Bonnafé in [6].
We first need to discuss the theoretical context in which
they arise: Poisson deformations.

Poisson deformations
A method to study singularities—and to possibly

create interesting new ones—is via deformations. When
we have a symplectic singularity we would like to con-
sider only deformations deforming the symplectic struc-
ture as well. This is problematic, however, since the
symplectic form exists only on the smooth locus and not
globally.

Remember Poisson brackets? They have a key ad-
vantage over symplectic forms, namely they exist glob-
ally. Recall that if X is a smooth symplectic vari-
ety, then the symplectic form on X induces a Poisson
bracket on C[X]. Hence, if X is a (not necessarily
smooth) symplectic variety, then since Xsm carries a
symplectic form, we have a Poisson bracket on C[Xsm].
Now, X is normal by definition, therefore X \ Xsm is
of codimension ≥ 2 in X , and now the algebraic Har-
tog’s theorem (see [13, Theorem 6.45]) implies that the
restriction map C[X] → C[Xsm] is an isomorphism so
that the Poisson bracket extends uniquely from C[Xsm]
to C[X]. This global Poisson bracket is easily obtained
in the case of symplectic quotient singularities V/G
as in Example 1: the Poisson bracket on C[V ] is G-
invariant and thus restricts to a Poisson bracket on the
coordinate ring C[V ]G of V/G.

Now, let A be a Poisson algebra over C, e.g. A =
C[X] for a symplectic variety X . Let R be a C-algebra.
A flat family of Poisson deformations of A over R is
a flat R-algebra Ã equipped with an R-linear Poisson
bracket such that Ã/m0Ã ≃ A as Poisson algebras,
where m0 is some fixed maximal ideal in R. Note that
the Poisson bracket on Ã induces a Poisson bracket on
any quotient Ã/mA by a maximal ideal m of R so that
we really get a family of Poisson deformations A and
one of them is our original algebra A. Geometrically,

Spec(Ã) is a flat family of Poisson deformations of the
Poisson variety Spec(A) over the base Spec(R).

Calogero–Moser spaces
How can we construct Poisson deformations of an

affine symplectic variety X? Naively, we would like to
take a presentation of the ring C[X] and then deform
the relations appropriately. But this is problematic be-
cause we usually do not have a good understanding of
X and we do not know a presentation of C[X] (see the
last section on computations for an example illustrating
this). For quotient singularities V/G, there is a beautiful
solution due to Etingof and Ginzburg [10]. The Pois-
son deformations of V/G are called Calogero–Moser
spaces. They have numerous applications in geometry,
representation theory, and physics.

The basic idea

We start with the skew group ring C[V ]⋊G. This is
simply the group ring of G over C[V ], i.e. the free C[V ]-
module with basis the elements of G, and multiplication
defined by

(f1g1)(f2g2) = f1f
g1
2 g1g2 (7)

for gi ∈ G and fi ∈ C[V ]. Here, fg is the induced right
action of g ∈ G on polynomial functions f ∈ C[V ].
Note that C[V ]⋊G is an infinite-dimensional C-algebra
and it is noncommutative if G acts nontrivially on V .

What has this algebra to do with V/G? It is an easy
exercise to show that the center of C[V ] ⋊ G is equal
to C[V ]G. We can therefore think of C[V ] ⋊ G as the
“noncommutative coordinate ring” of V/G. Etingof and
Ginzburg [10] add: “[...] it is believed that the ‘right’ ge-
ometry of the G-action on X can be read off from the
‘non-commutative algebraic geometry’ of C[V ]⋊G.”

The skew group ring has an easy presentation: since
C[V ] is just a polynomial ring, we only need the rela-
tions in G together with the relations (7) encoding the
action of G on V . The idea is now to deform C[V ]⋊G
and take the center of the deformations to get deforma-
tions of V/G.

Symplectic reflection algebras

Etingof and Ginzburg [10] showed that this idea in-
deed works. They constructed a flat R-algebra H̃ over a
polynomial ring R̃ = C[T,C1, . . . , CN ] for a certain N

depending on G such that center Z of H = H̃/TH̃ is a
flat family of Poisson deformations of C[V ]G over R =

R̃/T R̃. So, in particular, for any c = (c1, . . . , cN ) ∈
CN the center Zc of

Hc = H/{C1 − c1, . . . , CN − cN}H
is a Poisson deformation of C[V ]G. The associated va-
riety Xc is called a Calogero–Moser space. It is an irre-
ducible normal Gorenstein variety equipped with a Pois-
son bracket.

The algebra H̃ is called the symplectic reflection al-
gebra. The name stems from the fact that the integer N
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above is the number of conjugacy classes of symplectic
reflections in G, i.e. elements whose fixed space is of
codimension 2 in V . The symplectic reflections play a
key role in the construction of H̃ .

Just to give an idea, H̃ is defined as the quotient of
T (V ) ⋊ G, where T (V ) is the tensor algebra of V , by
relations of the form

vw − wv = κ(v, w) ∈ RG , (8)

for v, w ∈ V , where κ(v, w) denotes some explicit ele-
ment in the group ring RG which I am not going to spec-
ify any further here. When setting T = 0 and Ci = 0 for
all i, this element is zero so that H0 is equal to C[V ]⋊G
and therefore Z0 = C[V ]G.

The Poisson bracket on Zc comes from a commu-
tator in H̃ , which explains why we need the additional
parameter T as well. It is an amazing fact the Calogero–
Moser spaces yield all the Poisson deformations of V/G
(see [2]). From an algebraic point of view, the general
setting of symplectic reflection algebras is that of filtered
deformations (see [16]).

The fact that H is a family of deformations of
C[V ]⋊G implies that as a vector space Hc is isomorphic
to C[V ]⋊G. This fact is called the Poincaré–Birkhoff–
Witt theorem. In particular, Hc has a nice basis con-
sisting of elements of the form fg with f ∈ C[V ] and
g ∈ G. Such a basis is called a PBW basis.

Computational approach
Calogero–Moser spaces are again (not necessarily

smooth) symplectic varieties (see [14, Proposition 4.5]).
What kind of symplectic singularities do they have? The
new symplectic singularities discovered in [5] are in-
deed singularities of Calogero–Moser spaces, so this
seems to be an interesting question. It would be exciting
if we could construct and study Calogero–Moser spaces
in the computer to do experiments. This is precisely
the topic of my recent work with Bonnafé [6]. I want
to note that the study of singularities is just one of the
many facets of our computational approach.

Symplectic singularities associated to complex reflec-
tion groups

I will from now on restrict to a special (but very im-
portant) case of symplectic quotient singularities. Our
algorithms from [6] are adapted to this setting. Let h be
a vector space. Recall from (2) that T ∗h = h⊕h∗ carries
a symplectic form. If W is a finite group of linear au-
tomorphisms of h, then W naturally acts on h∗ and thus
on T ∗h as well. This action clearly leaves the symplectic
form invariant, hence T ∗h/W is a symplectic variety.

We assume that W is a complex reflection group, i.e.
W is generated by elements s whose fixed space is a hy-
perplane in h. These groups naturally arise in algebraic
geometry: it is a classical fact that h/W is smooth if
and only if W is a complex reflection group. Complex
reflection groups have been classified by Shephard and

Todd [20]. The symplectic reflection algebra for this
special case has a special name: the rational Cherednik
algebra. The symplectic reflections are in one-to-one
correspondence with the complex reflections.

Backbone of the computations

Recall that the Calogero–Moser space is the center
of the rational Cherednik algebra. So, in order to con-
struct this variety in the computer, we first need to be
able to compute in the rational Cherednik algebra itself.

I need to clarify what I mean by “compute”. Re-
call that the rational Cherednik algebra Hc is as a vector
space isomorphic to C[h⊕h∗]⋊W and it therefore has a
nice basis (PBW basis). Now, by “compute” I mean that
we can rewrite the product of two elements again in a
PBW basis so that we can test for equality etc. Experts
may think of Groebner basis computations but Groeb-
ner theory is actually not needed to work with these al-
gebras because the rewrite relations are straightforward
from the defining relations (8).

I achieved this a while ago (motivated by applica-
tions in representation theory) in form of a theoretical
algorithm [21] together with an implementation in my
software package CHAMP (Cherednik Algebra Magma
Package) [22] based on the computer algebra system
MAGMA [17]. The reasons for choosing MAGMA was
that the computations require a fast computer algebra
system that can do group theory, representation theory,
algebraic geometry, number theory, etc. In the mean-
time, the new computer algebra system OSCAR [18]
was developed having similar characteristics but also
having the advantage of being open source.

Computing the center

Being able to compute in rational Cherednik alge-
bras is nice but how do we get the center? This is the
starting point of my work with Bonnafé [6]. The key
observation is that the natural “truncation” map

Trunc: H → R[h⊕ h∗] (9)

sending h ∈ H to the coefficient of 1 ∈ W in a PBW
basis restricts to an isomorphism between the center Z
of H and the invariant ring R[h ⊕ h∗]W . The latter can
be handled with computational invariant theory and we
found a way to compute the inverse of Trunc using an
inductive deformation procedure. In this way we can
deform a system of fundamental invariants for the ac-
tion of W on T ∗h to a system of generators of Z as an
R-algebra.

Similarly, we found a way to deform relations be-
tween the fundamental invariants to relations between
the generators of Z, ultimately giving a presentation
of Z. After specialization in a point c ∈ CN , this gives
a presentation of Zc. We can also explicitly compute the
Poisson bracket on Zc. This again is based on computa-
tions in the rational Cherednik algebra itself.

Instead of going into further details, I will illustrate
our computational approach and its power in an explicit
example.
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An example
We consider T ∗h/W where W is the dihedral group

of order 2d acting in a reflection representation on h =
C2. Explicitly, W is generated by the matrices(

0 1
1 0

)
and

(
0 ζ

ζ−1 0

)
,

where ζ is a primitive 5th root of unity. This group is
created in MAGMA/CHAMP as follows:

> W := ShephardTodd(5,5,2); W;
MatrixGroup(2, Cyclotomic Field of order 5 and

degree 4)
Generators:

[0 1]
[1 0]

[ 0
zeta_5]

[-zeta_5ˆ3 - zeta_5ˆ2 - zeta_5 - 1
0]

To get an idea about the complexity of C[h⊕h∗]W in this
seemingly simple case, we compute a system of funda-
mental invariants and relations between them:

> SymplecticDoublingFundamentalInvariants(W);
[

y1*y2,
y1*x1 + y2*x2,
x1*x2,
y1ˆ5 + y2ˆ5,
y1ˆ4*x2 + y2ˆ4*x1,
y1ˆ3*x2ˆ2 + y2ˆ3*x1ˆ2,
y1ˆ2*x2ˆ3 + y2ˆ2*x1ˆ3,
y1*x2ˆ4 + y2*x1ˆ4,
x1ˆ5 + x2ˆ5

]
> SymplecticDoublingInvariantRingPresentation(W);
Ideal of Polynomial ring of rank 9 over Cyclotomic

Field of order 5 and degree 4
Order: Lexicographical
Variables: z1, z2, z3, z4, z5, z6, z7, z8, z9
Basis:
[

z1*z6 - z2*z5 + z3*z4,
z1*z7 - z2*z6 + z3*z5,
z1*z8 - z2*z7 + z3*z6,
z1*z9 - z2*z8 + z3*z7,
-4*z1ˆ2*z2*z3ˆ2 + 5*z1*z2ˆ3*z3 - z2ˆ5 + z4*z9

- z6*z7,
4*z1ˆ4*z3 - z1ˆ3*z2ˆ2 + z4*z6 - z5ˆ2,
4*z1ˆ3*z2*z3 - z1ˆ2*z2ˆ3 + z4*z7 - z5*z6,
-4*z1ˆ3*z3ˆ2 + 5*z1ˆ2*z2ˆ2*z3 - z1*z2ˆ4 + z4*

z8 - z5*z7,
-4*z1ˆ2*z2*z3ˆ2 + z1*z2ˆ3*z3 - z5*z8 + z6*z7,
4*z1ˆ2*z2ˆ2*z3 - z1*z2ˆ4 + z4*z8 - z6ˆ2,
-4*z1ˆ2*z3ˆ3 + 5*z1*z2ˆ2*z3ˆ2 - z2ˆ4*z3 + z5*

z9 - z6*z8,
4*z1*z2ˆ2*z3ˆ2 - z2ˆ4*z3 + z5*z9 - z7ˆ2,
4*z1*z2*z3ˆ3 - z2ˆ3*z3ˆ2 + z6*z9 - z7*z8,
4*z1*z3ˆ4 - z2ˆ2*z3ˆ3 + z7*z9 - z8ˆ2

]

Here, “symplectic doubling” refers to considering the
action of W on T ∗h.

Next, we create the rational Cherednik algebra H0:

> H := RationalCherednikAlgebra(W,0 : Type:="BR-K"
);

The “Type” argument is about the particular form of pa-
rameters used. One can now compute in this algebra
using a PBW basis. We refrain from such computations
here and straightaway compute a presentation of Z:

> time CenterPresentation(H):
[

z1*z6 + -1*z2*z5 + z3*z4,
z1*z7 + -1*z2*z6 + z3*z5,
z1*z8 + -1*z2*z7 + z3*z6,
z1*z9 + -1*z2*z8 + z3*z7,
-4*z1ˆ2*z2*z3ˆ2 + 5*z1*z2ˆ3*z3 + -100*K1_1ˆ2*

z1*z2*z3 + -1*z2ˆ5 +
100*K1_1ˆ2*z2ˆ3 + z4*z9 + -1*z6*z7,

4*z1ˆ4*z3 + -1*z1ˆ3*z2ˆ2 + 100*K1_1ˆ2*z1ˆ3 +
z4*z6 + -1*z5ˆ2,

4*z1ˆ3*z2*z3 + -1*z1ˆ2*z2ˆ3 + 100*K1_1ˆ2*z1ˆ2*
z2 + z4*z7 + -1*z5*z6,

-4*z1ˆ3*z3ˆ2 + 5*z1ˆ2*z2ˆ2*z3 + -100*K1_1ˆ2*z1
ˆ2*z3 + -1*z1*z2ˆ4 +
100*K1_1ˆ2*z1*z2ˆ2 + z4*z8 + -1*z5*z7,

-4*z1ˆ2*z2*z3ˆ2 + z1*z2ˆ3*z3 + -100*K1_1ˆ2*z1*
z2*z3 + -1*z5*z8 + z6*z7,

4*z1ˆ2*z2ˆ2*z3 + -1*z1*z2ˆ4 + 100*K1_1ˆ2*z1*z2
ˆ2 + z4*z8 + -1*z6ˆ2,

-4*z1ˆ2*z3ˆ3 + 5*z1*z2ˆ2*z3ˆ2 + -100*K1_1ˆ2*z1
*z3ˆ2 + -1*z2ˆ4*z3 +
100*K1_1ˆ2*z2ˆ2*z3 + z5*z9 + -1*z6*z8,

4*z1*z2ˆ2*z3ˆ2 + -1*z2ˆ4*z3 + 100*K1_1ˆ2*z2ˆ2*
z3 + z5*z9 + -1*z7ˆ2,

4*z1*z2*z3ˆ3 + -1*z2ˆ3*z3ˆ2 + 100*K1_1ˆ2*z2*z3
ˆ2 + z6*z9 + -1*z7*z8,

4*z1*z3ˆ4 + -1*z2ˆ2*z3ˆ3 + 100*K1_1ˆ2*z3ˆ3 +
z7*z9 + -1*z8ˆ2

]
Time: 1.600

The computation took only 1.6 seconds. If you look
closely, you see there is just one parameter in this case
(denoted K1 1). We want to study the Calogero–Moser
space when we specialize the parameter to 1:
> X := CalogeroMoserSpace(H, [1]);

This command creates the Calogero–Moser space X as
an affine scheme over Q(ζ) in MAGMA. There is no
magic scheme theory happening here: this only sets up
a geometric context for an ideal in a polynomial ring so
that we can conveniently ask geometric questions. For
example, we compute the singular locus of X:
> time Xsing := SingularSubscheme(X);
Time: 19.020

The output is horrendous! We make it simpler by com-
puting the reduced subscheme structure (taking the rad-
ical):
> time Xsing := ReducedSubscheme(Xsing);
Time: 651.340

In comparison to all computations so far, this one takes
a lot of time. The output looks much simpler but we can
make it even simpler by computing a minimal basis:
> time MinimalBasis(Xsing);
[

z9,
z8,
z7,
z6,
z5,
z4,
z3,
z2,
z1

]
Time: 0.000

So, surprise, the Calogero–Moser space X has an iso-
lated singularity at the origin! We know from theory
that it is a symplectic singularity. Is it a known one, i.e.
does it belong to Example 1 or Example 2?
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Beauville [1] characterized minimal nilpotent orbit
singularities (recall that these have outside of type C
trivial local fundamental group) as those for which their
projective tangent cone is smooth.

Let us test this condition. We denote the point of X
corresponding to the origin by o. First, we compute the
tangent cone:

> o := X![0,0,0,0,0,0,0,0,0];
> cone := TangentCone(X, o);
> cone;
Scheme over Rational Field defined by
z7*z9 - z8ˆ2,
z6*z9 - z7*z8,
z5*z9 - z7ˆ2,
z4*z9 - z6*z7,
z1*z9 - z2*z8 + z3*z7,
z6*z8 - z7ˆ2,
z5*z8 - z6*z7,
z4*z8 - z6ˆ2,
z1*z8 - z2*z7 + z3*z6,
z5*z7 - z6ˆ2,
z4*z7 - z5*z6,
z1*z7 - z2*z6 + z3*z5,
z4*z6 - z5ˆ2,
z1*z6 - z2*z5 + z3*z4,
z1*z5ˆ2 - z2*z4*z5 + z3*z4ˆ2

Next, we take projective closure of the tangent cone:

> projcone := Scheme(Proj(CoordinateRing(
AmbientSpace(X))), MinimalBasis(cone));

> projcone;
Scheme over Rational Field defined by
z7*z9 - z8ˆ2,
z6*z9 - z7*z8,
z6*z8 - z7ˆ2,
z5*z9 - z7ˆ2,
z5*z8 - z6*z7,
z5*z7 - z6ˆ2,
z4*z9 - z6*z7,
z4*z8 - z6ˆ2,
z4*z7 - z5*z6,
z4*z6 - z5ˆ2,
z1*z9 - z2*z8 + z3*z7,
z1*z8 - z2*z7 + z3*z6,
z1*z7 - z2*z6 + z3*z5,
z1*z6 - z2*z5 + z3*z4

Now, we check whether the projective tangent cone is
singular:

> time IsSingular(projcone);
true
Time: 119.580

The conclusion is that (X, 0) is not a minimal nilpotent
orbit singularity!

We do not yet have a computational approach to the
local fundamental group. In [5] it was proven that (X, 0)
has trivial local fundamental group. Hence, this is a new
example of a symplectic singularity! This indeed works
for all dihedral groups of order 2d with d ≥ 5, giving an
infinite family of new examples.

Closing remarks

By similar computations we have shown in [6] that
for the exceptional complex reflection group of type G4

there is a parameter c such that the Calogero–Moser
space Xc has an isolated symplectic singularity and this
singularity is equivalent to the minimal nilpotent orbit
singularity for the Lie algebra of type sl3. I am con-
vinced that this result cannot be derived by purely the-

oretical arguments yet and I do not understand why sl3
arises in the context of G4. There is still a lot to discover.
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