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Abstract. We present an algorithm for explicitly computing the simple objects of the
categorical (Drinfeld) center of a fusion category. Our approach is based on decomposing
the images of simple objects under the induction functor from the category to its center.
We have implemented this algorithm in a general-purpose software framework for tensor
categories that we develop based on the high-performance programming language Julia
and the open-source computer algebra system OSCAR. While the required computations
are still too heavy to investigate established examples whose center is not yet known up
to equivalence, our algorithm also works over not necessarily algebraically closed fields
and this yields new explicit examples of non-split modular categories.

1. Introduction

Algorithmic techniques in group and representation theory have a long and successful
history. Two, of the many, highlights are

and they are supported by many computer algebra systems. The algorithmic side of the
categorical (categorified) level involving tensor categories and categorical representations,
however, is still mostly unexplored and not supported. Generally, the goal should be to
find algorithmic approaches to categorical constructions in this field that express the
result in terms of the original input data, avoiding anything non-constructive like abstract
equivalences. Our first main objective was to achieve this goal for the construction of the
categorical center of a fusion category.

To initiate an investigation, we have begun developing a general-purpose open-source
software framework TensorCategories.jl [2] to constructively work with structures in
this realm.

Let 𝒞 be a monoidal category with associators

(1.1) 𝑎𝑋,𝑌,𝑍 : (𝑋 ⊗ 𝑌 )⊗ 𝑍
≃−→ 𝑋 ⊗ (𝑌 ⊗ 𝑍) .
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Throughout, we will use conventions as in the standard reference [1]. Note that by Mac
Lane’s strictness theorem [1, Theorem 2.8.5], 𝒞 is monoidally equivalent to a strict monoidal
category, i.e. where all associators are the identity. However, due to our general goal we do
not want to assume that 𝒞 is strict. There is also a more fundamental reason to not assume
this here. Namely, to encode a category in the computer we usually need to “discretize” it,
meaning we need to choose a skeleton.

[1, Remark 2.8.7], comment CAP somewhat

Definition 1.1. A half-braiding for an object 𝑋 ∈ 𝒞 is a natural isomorphism

𝛾𝑋 = {𝛾𝑋(𝑌 ) : 𝑋 ⊗ 𝑌
≃−→ 𝑌 ⊗𝑋 | 𝑌 ∈ 𝒞}

such that

(𝑌 ⊗𝑋)⊗ 𝑍 𝑌 ⊗ (𝑋 ⊗ 𝑍)

(𝑋 ⊗ 𝑌 )⊗ 𝑍 𝑌 ⊗ (𝑍 ⊗𝑋)

𝑋 ⊗ (𝑌 ⊗ 𝑍) (𝑌 ⊗ 𝑍)⊗𝑋

𝑎𝑌,𝑋,𝑍

id𝑌 ⊗𝛾𝑋(𝑍)𝛾𝑋(𝑌 )⊗id𝑍

𝑎𝑋,𝑌,𝑍

𝛾𝑋(𝑌⊗𝑍)

𝑎𝑌,𝑍,𝑋

commutes for all 𝑌, 𝑍 ∈ 𝒞 and 𝛾1 = id𝑋 .

Definition 1.2. The categorical center 𝒵(𝒞) of 𝒞 is given by the following data:
∙ Objects are tuples (𝑋, 𝛾𝑋) where 𝑋 ∈ 𝒞 and 𝛾𝑋 is a half-braiding.
∙ The sets Hom𝒵(𝒞)((𝑋, 𝛾𝑋), (𝑌, 𝛾𝑌 )) are given by morphisms 𝑓 ∈ Hom𝒞(𝑋, 𝑌 ) such

that

(1.2)
𝑋 ⊗ 𝑍 𝑌 ⊗ 𝑍

𝑍 ⊗𝑋 𝑍 ⊗ 𝑌

𝑓⊗id𝑍

𝛾𝑋 𝛾𝑌

id𝑍 ⊗𝑓

commutes for all 𝑍 ∈ 𝒞.

Acknowledgements. This work is a contribution to the SFB-TRR 195 “Symbolic Tools
in Mathematics and their Application” of the German Research Foundation (DFG). We
thank Liam Rogel for testing our software and providing helpful feedback.

2. An algorithm based on the induction functor

From now on we assume 𝒞 to be a spherical fusion category over an any field 𝕜 with
simple objects 𝑋1, ..., 𝑋𝑛 such that dim 𝒞 ̸= 0 and End(𝑋𝑖) = 𝕜 for all 𝑖. The last condition
is usually known as 𝒞 beeing split semisimple. Note that we explicitly do not require 𝕜
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to be algebraically closed. This is useful, since even though it is possible to work with
algebraic numbers in the computer it is comparatively slow. Thus it is useful to work over
any fixed field.

We recall some useful results.

Theorem 2.1 ([4, Theorem 1.2.]). 𝒵(𝒞) is again a spherical fusion category over 𝕜.
Furthermore 𝒵(𝒞) is modular if it is split.

Remark 2.2. The original statement deals only with the case where 𝕜 is algebraically closed,
but the proof does not rely on the algebraic closedness of 𝕜 and thus transfers directly.

Lemma 2.3 ([4, Lemma 3.3]). Let 𝒞 be a fusion category with simple objects {𝑋𝑖}.
Let 𝑍 ∈ 𝒞. There is a bijection between half-braidings for 𝑍 and families of morphisms
{𝛾𝑍(𝑋𝑖) ∈ Hom(𝑍 ⊗𝑋𝑖, 𝑋𝑖 ⊗ 𝑍)} such that for all 𝑖, 𝑗, 𝑘 and 𝑡 ∈ Hom(𝑋𝑘, 𝑋𝑖 ⊗𝑋𝑗) the
diagram

𝑍 ⊗𝑋𝑘 𝑋𝑘 ⊗ 𝑍 (𝑋𝑖 ⊗𝑋𝑗)⊗ 𝑍

𝑍 ⊗ (𝑋𝑖 ⊗𝑋𝑗) 𝑋𝑖 ⊗ (𝑋𝑗 ⊗ 𝑍)

(𝑍 ⊗𝑋𝑖)⊗𝑋𝑗 (𝑋𝑖 ⊗ 𝑍)⊗𝑋𝑗 𝑋𝑖 ⊗ (𝑍 ⊗𝑋𝑗)

id𝑍 ⊗𝑡

𝛾𝑍(𝑋𝑘) 𝑡⊗id𝑍

𝑎𝑋𝑖,𝑋𝑗,𝑍

𝑎−1
𝑍,𝑋𝑖,𝑋𝑗

𝛾𝑍(𝑋𝑖)⊗id𝑋𝑗
𝑎𝑋𝑖,𝑍,𝑋𝑗

id𝑋𝑖
⊗𝛾𝑍(𝑋𝑗)

commutes and 𝛾𝑍(1) = id𝑍.

Lemma 2.3 allows us to talk about half-braidings in discrete manner. All characterising
information of a half-braiding is encoded in the isomorphisms 𝛾𝑍(𝑋𝑖) for simple objects
𝑋𝑖. From those all half-braidings can be easily build up, which allows also to obtain the
braiding for 𝒵(𝒞). Moreover we are able to check in finite time whether a given set of
half-braiding morphisms is indeed a half-braiding.

Now let 𝑋𝑖, 𝑋𝑗, 𝑋𝑘 be simple and 𝑡 ∈ Hom(𝑋𝑘, 𝑋𝑖 ⊗ 𝑋𝑗). Then the lemma states an
equation

𝜑(𝛾𝑍(𝑋𝑘), 𝑡) = 𝜓(𝛾𝑍(𝑋𝑖), 𝛾𝑍(𝑋𝑗), 𝑡)

where

𝜑(𝛾𝑍(𝑋𝑘), 𝑡) = 𝑎𝑋𝑖,𝑋𝑗 ,𝑋𝑘
∘ (𝑡⊗ id𝑍) ∘ 𝛾𝑍(𝑋𝑘)

𝜓(𝛾𝑍(𝑋𝑖), 𝛾𝑍(𝑋𝑗), 𝑡) = (id𝑋𝑖
⊗𝛾𝑍(𝑋𝑗)) ∘ 𝑎𝑋𝑖,𝑍,𝑋𝑗

∘ (𝛾𝑍𝑋𝑖 ⊗ id𝑋𝑗
)∘

𝑎−1
𝑍,𝑋𝑖,𝑋𝑗

∘ (id𝑍 ⊗𝑡).

Clearly 𝜑 and 𝜓 are linear in 𝑡 as well as in 𝛾𝑍(𝑋𝑖), 𝛾𝑍(𝑋𝑗) and 𝛾𝑍(𝑋𝑘) respectively.
Thus whenever the equation holds for a basis of Hom(𝑋𝑘, 𝑋𝑖 ⊗ 𝑋𝑗) it holds for all 𝑡.
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After choosing a basis 𝑓1, ..., 𝑓𝑟 for Hom(𝑍 ⊗𝑋𝑘, 𝑋𝑖 ⊗ (𝑍 ⊗𝑋𝑗)) and bases 𝑔𝑙1, ..., 𝑔𝑙𝑟𝑙 for
Hom(𝑍 ⊗𝑋𝑙, 𝑋𝑙 ⊗ 𝑍) we can replace 𝛾𝑍(𝑋𝑙) with

𝛾𝑍(𝑋𝑙) = 𝑎𝑙1𝑔
𝑙
1 + · · ·+ 𝑎𝑙𝑟𝑙𝑔

𝑙
𝑟𝑙

and set up a system of quadratic equations by comparing coefficients.Using algebraic
solvers like msolve1 this yields an approach to finding simples in the center. Although the
ideals generated by this system of equations often have positive dimension and thus an
inifinite set of solutions. So first of all much computational work is required to make this
happen since solving quadratic systems is very slow making the approach from this only
useful in cases where other approches fail, e.g. if the category is not spherical.

Example 2.4. Consider the category 𝒞 = VecQ(𝑆3). To use the approach above we need
to examine candidates for central objects and then solve for the half-braidings. Let 𝒦0(𝒞)
be the Grothendieck ring of 𝒞. Then every object in the image of the forgetful functor
is mapped to an element of the center of 𝒦0(𝒞) under the projection. I.e. only objects
corresponding to the center of 𝒦0(𝒞) need to be considered. For 𝒞 this is generated by
𝛿(), 𝛿(12) + 𝛿(13) + 𝛿(23) and 𝛿(123) + 𝛿(132). When no structural properties are used to reduce
the number of variables and equations this leads to already rather big ideals. In the case
of 𝛿(12) + 𝛿(13) + 𝛿(23) this means 6 · 3 = 18 indeterminates in 108 equations.

1https://msolve.lip6.fr

https://msolve.lip6.fr
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⟨−𝑥21 + 𝑥1, − 𝑥22 + 𝑥2,−𝑥23 + 𝑥3, 𝑥1 − 𝑥24, 𝑥2 − 𝑥5𝑥6, 𝑥3 − 𝑥5𝑥6, 𝑥1 − 𝑥7𝑥9, 𝑥2 − 𝑥28,

𝑥3 − 𝑥7𝑥9, 𝑥1 − 𝑥10𝑥14, 𝑥2 − 𝑥11𝑥15, 𝑥3 − 𝑥12𝑥13, 𝑥1 − 𝑥12𝑥13, 𝑥2 − 𝑥10𝑥14,

𝑥3 − 𝑥11𝑥15, 𝑥1 − 𝑥16𝑥17, 𝑥2 − 𝑥16𝑥17, 𝑥3 − 𝑥218,−𝑥1𝑥4 + 𝑥4,−𝑥2𝑥5 + 𝑥5,

− 𝑥3𝑥6 + 𝑥6,−𝑥3𝑥5 + 𝑥5,−𝑥2𝑥6 + 𝑥6, 𝑥4 − 𝑥7𝑥12, 𝑥5 − 𝑥8𝑥11, 𝑥6 − 𝑥9𝑥10,

𝑥4 − 𝑥10𝑥17, 𝑥5 − 𝑥11𝑥18, 𝑥6 − 𝑥12𝑥16, 𝑥4 − 𝑥9𝑥13, 𝑥5 − 𝑥7𝑥14, 𝑥6 − 𝑥8𝑥15,

𝑥4 − 𝑥14𝑥16, 𝑥5 − 𝑥13𝑥17, 𝑥6 − 𝑥15𝑥18,−𝑥1𝑥7 + 𝑥7,−𝑥2𝑥8 + 𝑥8,−𝑥3𝑥9 + 𝑥9,

− 𝑥4𝑥13 + 𝑥7,−𝑥5𝑥15 + 𝑥8,−𝑥6𝑥14 + 𝑥9,−𝑥3𝑥7 + 𝑥7,−𝑥1𝑥9 + 𝑥9,

− 𝑥5𝑥10 + 𝑥7,−𝑥6𝑥11 + 𝑥8,−𝑥4𝑥12 + 𝑥9, 𝑥7 − 𝑥13𝑥18, 𝑥8 − 𝑥14𝑥16, 𝑥9 − 𝑥15𝑥17,

𝑥7 − 𝑥11𝑥16, 𝑥8 − 𝑥10𝑥17, 𝑥9 − 𝑥12𝑥18,−𝑥1𝑥10 + 𝑥10,−𝑥2𝑥11 + 𝑥11,

− 𝑥3𝑥12 + 𝑥12,−𝑥4𝑥16 + 𝑥10,−𝑥5𝑥18 + 𝑥11,−𝑥6𝑥17 + 𝑥12,−𝑥6𝑥7 + 𝑥10,

− 𝑥5𝑥8 + 𝑥11,−𝑥4𝑥9 + 𝑥12,−𝑥2𝑥10 + 𝑥10,−𝑥3𝑥11 + 𝑥11,−𝑥1𝑥12 + 𝑥12,

𝑥10 − 𝑥13𝑥15, 𝑥11 − 𝑥13𝑥14, 𝑥12 − 𝑥14𝑥15,−𝑥8𝑥16 + 𝑥10,−𝑥7𝑥17 + 𝑥11,

− 𝑥9𝑥18 + 𝑥12,−𝑥1𝑥13 + 𝑥13,−𝑥2𝑥14 + 𝑥14,−𝑥3𝑥15 + 𝑥15,−𝑥4𝑥7 + 𝑥13,

− 𝑥5𝑥9 + 𝑥14,−𝑥6𝑥8 + 𝑥15,−𝑥7𝑥18 + 𝑥13,−𝑥8𝑥17 + 𝑥14,−𝑥9𝑥16 + 𝑥15,

− 𝑥10𝑥11 + 𝑥13,−𝑥11𝑥12 + 𝑥14,−𝑥10𝑥12 + 𝑥15,−𝑥3𝑥13 + 𝑥13,−𝑥1𝑥14 + 𝑥14,

− 𝑥2𝑥15 + 𝑥15,−𝑥5𝑥16 + 𝑥13,−𝑥4𝑥17 + 𝑥14,−𝑥6𝑥18 + 𝑥15,−𝑥1𝑥16 + 𝑥16,

− 𝑥2𝑥17 + 𝑥17,−𝑥3𝑥18 + 𝑥18,−𝑥4𝑥10 + 𝑥16,−𝑥5𝑥12 + 𝑥17,−𝑥6𝑥11 + 𝑥18,

− 𝑥7𝑥15 + 𝑥16,−𝑥8𝑥14 + 𝑥17,−𝑥9𝑥13 + 𝑥18,−𝑥8𝑥10 + 𝑥16,−𝑥9𝑥11 + 𝑥17,

− 𝑥7𝑥12 + 𝑥18,−𝑥6𝑥13 + 𝑥16,−𝑥4𝑥14 + 𝑥17,−𝑥5𝑥15 + 𝑥18,−𝑥2𝑥16 + 𝑥16,

− 𝑥1𝑥17 + 𝑥17, 𝑥1 − 1, 𝑥2 − 1, 𝑥3 − 1⟩

As the number of simple objects and the multiplicity of the fusion coefficients goes
up the number of variables and equations increases drastically and solving the resulting
quadratic systems becomes practically impossible. Especially if the coefficients are not in
Q.

Since in most literature fusion categories are assumed to be strict and we explictly want
to work with non-strict categories we will reformulate some results from [3].
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Definition 2.5. Let 𝑆, 𝑇,𝑊 ∈ 𝒞, 𝑓 ∈ Hom𝒞(𝑆,𝑊 ⊗ 𝑇 ) and 𝑔 ∈ Hom𝒞(𝑆
* ⊗𝑊,𝑇 *). Let

𝜓 be the spherical structure. There is a non-degenerate pairing

(2.1) (𝑓, 𝑔) = Tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑊 (𝑆 ⊗ 𝑆*)⊗𝑊 𝑆 ⊗ (𝑆* ⊗𝑊 )

(𝑊 ⊗ 𝑇 )⊗ 𝑇 *

𝑊 𝑊 ⊗ (𝑇 ** ⊗ 𝑇 *) 𝑊 ⊗ (𝑇 ⊗ 𝑇 *)

coev𝑆 ⊗ id𝑊 𝑎𝑆,𝑆*,𝑊

𝑓⊗𝑔

𝑎𝑊,𝑇,𝑇*

id𝑊 ⊗ ev𝑇* id𝑊 ⊗(𝜓𝑇⊗id𝑇* )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Remark 2.6. The pairing from definition 2.5 is precisely the pairing defined in [3, Eq. 1.6]
applied after transforming via the natural isomorphism hom(𝑆* ⊗𝑊,𝑇 *) ∼= hom(𝑆*, 𝑇 * ⊗
𝑊 *).

The following result is a rephrased version of [3, Theorem 2.3.].

Theorem 2.7. Let 𝐹 : 𝒵(𝒞) → 𝒞 be the forgetful functor and 𝐼 : 𝒞 → 𝒵(𝒞) the (left)
adjoint of 𝐹 . Then for 𝑋 ∈ 𝒞 we have

𝐹 (𝐼(𝑋)) =
𝑛⨁︁
𝑖=1

(𝑋𝑖 ⊗𝑋)⊗𝑋*
𝑖 .

The half-braiding for 𝑍 ∈ 𝒞 is given by 𝛾(𝑍) = 𝑑−1 ∘ (𝛾(𝑍)𝑖,𝑗) ∘ 𝑑′ with

𝛾𝑖,𝑗 : ((𝑋𝑖 ⊗𝑋)⊗𝑋*
𝑖 )⊗ 𝑍 → 𝑍 ⊗ ((𝑋𝑗 ⊗𝑋)⊗𝑋*

𝑗 )

and 𝑑, 𝑑′ the distributivity isomorphisms. Let 𝐵,𝐵′ be dual bases of Hom(𝑋𝑖, 𝑍 ⊗ 𝑋𝑗),
respectively Hom(𝑋*

𝑖 ⊗ 𝑍,𝑋*
𝑗 ), with respect to the pairing 2.5. We then have

𝛾(𝑍)𝑖,𝑗 = dim𝑋𝑖

∑︁
𝑓∈𝐵,𝑔∈𝐵′

((𝑋𝑖 ⊗𝑋)⊗𝑋*
𝑖 )⊗ 𝑍 (𝑋𝑖 ⊗𝑋)⊗ (𝑋*

𝑖 ⊗ 𝑍)

((𝑍 ⊗𝑋𝑗)⊗𝑋)⊗𝑋*
𝑗

𝑍 ⊗ ((𝑋𝑗 ⊗𝑋)⊗𝑋*
𝑗 ) (𝑍 ⊗ (𝑋𝑗 ⊗𝑋))⊗𝑋*

𝑗

𝑎𝑋𝑖⊗𝑋,𝑋*
𝑖
,𝑍

(𝑓⊗id𝑋)⊗𝑔

𝑎𝑍,𝑋𝑗,𝑋
⊗id𝑋*

𝑗

𝑎𝑍,𝑋𝑗⊗𝑋,𝑋*
𝑗

.

We call the functor 𝐼 the induction.
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2.1. Obtaining Morphisms in 𝒵(𝒞). There are multiple ways to obtain morphisms in
in the center of of a fusion category 𝒞. The first and most straight forward approch is to
solve for the condition 1.2. If 𝑓 ∈ Hom𝒵(𝒞)(𝑋, 𝑌 ) ⊂ Hom𝒞(𝐹 (𝑋), 𝐹 (𝑌 )) we can write

𝑓 = 𝑎1𝑔1 + · · ·+ 𝑎𝑛𝑔𝑛

where 𝑔1, ..., 𝑔𝑛 is a basis of Hom𝒞(𝐹 (𝑋), 𝐹 (𝑌 )). Condition 1.2 yields now a set of equations

𝛾𝑌 (𝑍) ∘ 𝑓 ⊗ id𝑍 = id𝑍 ⊗𝑓 ∘ 𝛾𝑋(𝑍)

for each simple 𝑍 ∈ 𝒞 which are linear in the 𝑎𝑖. By solving this system we obtain a basis
of the space Hom𝒵(𝒞)(𝑋, 𝑌 ).

The second possibility is to use the following result.

Lemma 2.8 ([3, Lemma 2.2.]). Let 𝜓 be the spherical structure of 𝒞. If (𝑋, 𝛾𝑋), (𝑌, 𝛾𝑌 ) ∈
𝒵(𝒞) then the map 𝐸𝑋,𝑌 : Hom𝒞(𝑋, 𝑌 ) → Hom𝒞(𝑋, 𝑌 ) given by

𝐸𝑋,𝑌 (𝑡) =
1

dim 𝒞

𝑛∑︁
𝑖=1

dim𝑋𝑖𝜑𝑖(𝑡)

where 𝜑𝑖(𝑡) is given by

𝑋 𝑋 ⊗ (𝑋𝑖 ⊗𝑋*
𝑖 ) (𝑋 ⊗𝑋𝑖)⊗𝑋*

𝑖

(𝑋𝑖 ⊗𝑋)⊗𝑋*
𝑖

(𝑋𝑖 ⊗ 𝑌 )⊗𝑋*
𝑖

𝑋𝑖 ⊗ (𝑌 ⊗𝑋*
𝑖 )

𝑌 (𝑋**
𝑖 ⊗𝑋*

𝑖 )⊗ 𝑌 𝑋**
𝑖 ⊗ (𝑋*

𝑖 ⊗ 𝑌 )

id𝑋 ⊗ coev(𝑋𝑖)

𝜑𝑖(𝑡)

𝑎−1
𝑋,𝑋𝑖,𝑋

*
𝑖

𝛾𝑋(𝑋𝑖)⊗id𝑋*
𝑖

id𝑋𝑖
⊗𝑡⊗id𝑋*

𝑖

𝑎𝑋𝑖,𝑌,𝑋*
𝑖

𝜓𝑋𝑖
⊗𝛾𝑌 (𝑋*

𝑖 )

ev𝑋*
𝑖
⊗ id𝑌 𝑎−1

𝑋**
𝑖

,𝑋*
𝑖
,𝑌

is a projection from Hom𝒞(𝑋, 𝑌 ) onto Hom𝒵(𝒞)((𝑋, 𝛾𝑋), (𝑌, 𝛾𝑌 )).

Thirdly there are the isomorphisms of the adjunction of the induction functor. Thus
by Hom𝒞(𝑉, 𝑌 ) ∼= Hom𝒵(𝒞)(𝐼(𝑉 ), (𝑌, 𝛾)) for 𝑋 ∈ 𝒞 and (𝑌, 𝛾) ∈ 𝒵(𝒞) we can compute
morphisms out of images of the induction functor. The adjunction isomorphisms are
constructive and given by
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(2.2)
Hom𝒞(𝑉, 𝑌 ) ∼= Hom(𝐼(𝑉 ), (𝑌, 𝛾))

𝑓 ↦→
∑︁
𝑖

𝜑𝑖(𝑓) ∘ 𝑝𝑖

where 𝑝𝑖 :
⨁︀

𝑖(𝑋𝑖 ⊗ 𝑉 )⊗𝑋*
𝑖 → (𝑋𝑖 ⊗ 𝑉 )⊗𝑋*

𝑖 are the projections and

𝜑𝑖(𝑓) = dim(𝑋𝑖) ·

(𝑋𝑖 ⊗ 𝑉 )⊗𝑋*
𝑖 (𝑋𝑖 ⊗ 𝑌 )⊗𝑋*

𝑖

(𝑌 ⊗𝑋𝑖)⊗𝑋*
𝑖

𝑌 ⊗ (𝑋𝑖 ⊗𝑋*
𝑖 )

𝑌 𝑌 ⊗ (𝑋**
𝑖 ⊗𝑋*

𝑖 )

id𝑋𝑖
⊗𝑓⊗id𝑋*

𝑖

𝛾(𝑋𝑖)⊗id𝑋*
𝑖

𝑎𝑌,𝑋𝑖,𝑋𝑖*

id𝑌 ⊗𝜓𝑋𝑖
⊗id𝑋*

𝑖

id𝑌 ⊗ ev𝑋*
𝑖

The inverse is given by Hom(𝐼(𝑉 ), (𝑌, 𝛾)) → Hom𝒞(𝑉, 𝑌 ) : 𝑔 ↦→ 𝑝0 ∘ 𝑔. A proof can be
found in [3, text]

In practice we will need all three options. Whenever we need to full space of morphisms
option one is by far the fastest. But whenever we only need some morphisms - especially
between larger objects - it is useful to use option two or three to obtain those. Between
them option three is faster. Thus whenever we know that we deal with morphisms out of
an objects in the image of 𝐼 we will proceed with option three, otherwise with option two.
That this is practical we will see in the next section.

2.2. Computing Simple Objects in 𝒵(𝒞).

Lemma 2.9. Every simple (𝑍, 𝛾𝑍) ∈ 𝒵(𝒞) arrises as a subobject of 𝐼(𝑋𝑖) for some simple
𝑋𝑖.

Proof. It exists 𝑗 such that

0 ̸= dimHom𝒞(𝐹 ((𝑍, 𝛾𝑍)), 𝑋𝑗) = dimHom𝒵(𝒞)((𝑍, 𝛾𝑍), 𝐼(𝑋𝑗)).

Since (𝑍, 𝛾𝑍) is simple there exists a monomorphism (𝑍, 𝛾𝑍) →˓ 𝐼(𝑋𝑗). □

This is already enough to give a naive algorithm that computes all the simple objects in
the center of 𝒞.

Algorithm 2.10.
In: Simple objects 𝑋1, ..., 𝑋𝑛 of a spherical fusion category such that dim𝐶 ̸= 0.
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Out: A complete list of simple objects of 𝒵(𝒞).

1. Let 𝑋1, ..., 𝑋𝑛 be the simple objects of 𝒞. Compute all 𝐼(𝑋𝑖).
2. For all 𝑖 compute the simple subobjects of 𝐼(𝑋𝑖).
3. Reduce the list to non-isomorphic simple objects.

There are two black-boxes in the algorithm: We have to compute subobjects in 𝒵(𝒞)
and we have to check for isomorphy. The latter is straight forward at least for simple
objects. If 𝑍𝑖, 𝑍𝑗 are simple in 𝒵(𝒞) then since 𝒵(𝒞) is abelian Schur’s lemma allows to
conclude from

dimHom(𝑍𝑖, 𝑍𝑗) ≥ 1 ⇐⇒ 𝑍𝑖 ≃ 𝑍𝑗

whether 𝑍1 and 𝑍2 are isomorphic. On the other hand computing subobjects in a general
setting is hard. In the next section we will discuss how this can be done for semisimple
categories.

2.3. How to Compute Subobjects in semisimple Categories. Let 𝒞 be a semisimple
category. It is well known, that semisimple abelian categories with finitely many simple
objects are (as abelian categories) equivalent to a direct sum of finite dimensional vector
space categories. For the precise construction see [6]. Thus if 𝑋1, ..., 𝑋𝑛 are the simple
objects in 𝒞 then

𝒞 ≃
𝑛⨁︁
𝑖=1

Vec

.
Therefore any morphism 𝑓 ∈ Hom𝒞(𝑋, 𝑌 ) can be characterized by a family of vector

space morphisms. Moreover we can identify
⨁︀𝑛

𝑖=1Vec with a (not full) subcategory of Vec
by taking the direct sum of all objects, respectively morphisms, of the families. Thus after
fixing bases for the vector spaces every morphism is encoded by a matrix.

Consider an object 𝑋 ∈ 𝒞 with dimEnd(𝑋) = 𝑑. Then End(𝑋) is a vector space with
a basis id𝑋 , 𝑓1, ..., 𝑓𝑑−1. Let 𝑛 be the number of simple objects in the decomposition of 𝑋
into simple objects. Then after fixing an order of the summands any morphism in End(𝑋)

is given by a 𝑛× 𝑛 matrix. Let 𝑚1, ...,𝑚𝑑−1 be the matrices corresponding to 𝑓1, ..., 𝑓𝑑−1.
Then whenever 𝑑 ̸= 0 there exist non-trivial eigenvalues and eigenspaces for the matrices
𝑚1, ...,𝑚𝑑−1. Every non-trivial eigenspace ker(𝑚𝑖 − 𝜆𝐼𝑛) yields a non-trivial subobject
ker(𝑓𝑖 − 𝜆 id𝑋). In this manner 𝑋 can be decomposed inductively.

Remark 2.11. Another viable approach is to compute the endomorphism algebra and com-
puting central primitive idempotents. The big disadvantage here is that the endomorphism
space has to be computed in its entirety which is mostly not used in any way afterwards.



10 F. MÄURER AND U. THIEL

2.4. Refining the Algorithm. Following algorithm 2.10 will result in redundent compu-
tations. We can minimize the nessecary calculations by using some combinatorics of the
center construction.

Let 𝑍 ∈ 𝒵(𝒞) be simple. Then for every simple 𝑋𝑖 ∈ 𝒞 we have

dimHom𝒵(𝒞)(𝑍, 𝐼(𝑋𝑖)) = dimHom𝒞(𝐹 (𝑍), 𝑋𝑖)

due to the adjunction of 𝐹 and 𝐼. This implies that every simple object of 𝒵(𝒞) occurs
in every induction 𝐼(𝑋𝑖) with multiplicity dimHom(𝐹 (𝑍), 𝑋𝑖)/ dimEnd(𝑍𝑖). Thus it may
allow some speedup by factoring out already known simples from the other inductions.

Example 2.12. Consider the category of finite dimensional 𝑆3-graded C-vectorspaces
Vec𝜔𝑆3

twisted by a cocycle 𝜔. From the Grothendieck ring we know that simple objects
in 𝒵(Vec𝜔𝑆3

) lie over ⟨(), (12) + (23) + (13), (123) + (132)⟩. Indeed if we compute the
decomposition of 𝐹𝐼(𝑋𝑖) where 𝑋𝑖 = (), (12), (23), (13), (123), (132)⎛⎜⎜⎜⎜⎜⎜⎜⎝

6 0 0 0 0 0

0 2 2 2 0 0

0 2 2 2 0 0

0 2 2 2 0 0

0 0 0 0 3 3

0 0 0 0 3 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
we see that there must be two non-isomorphic simple objects over (12) + (13) + (23) and
three non-isomorphic simple objects over (123) + (132), otherwise the multiplicities do
not match. Also we conclude that 𝐼(12) ≃ 𝐼(13) ≃ 𝐼(23) and 𝐼(123) ≃ 𝐼(132). Thus we
need only to compute 𝐼(()), 𝐼(12) and 𝐼(123). By looking at the dimensions of the simple
objects in the center and recalling that dim𝒵(Vec𝜔𝑆3

) =
(︀
dimVec𝜔𝑆3

)︀2
= 36 we obtain

dimension information for the remaining simple objects:

36− (2 · 32 + 3 · 22) = 6

Thus there can be either six simple objects lying over () or two over () and one over 2 · ().
It becomes clear quickly that there can be only two non-isomorphic half-braidings on ().

Thus we refine the algorithm in the following manner.

Algorithm 2.13.
In: Simple objects 𝑋1, ..., 𝑋𝑛 of a spherical fusion category such that dim𝐶 ̸= 0.
Out: A complete list of simple objects of 𝒵(𝒞).

1. Order the 𝑋𝑖 by Frobenius-Perron dimension. We have 𝑋1 = 1

2. Compute 𝑍1 = 𝐼(𝑋1)



COMPUTING THE CENTER OF A FUSION CATEGORY 11

3. 𝑆 := [ ]

4. Compute simple subobjects of 𝑍1 and add them to 𝑆
5. For all 𝑗 = 2, ..., 𝑛

5.1. Let 𝑆 ′ := {𝑠 ∈ 𝑆 | Hom𝒞(𝐹 (𝑠), 𝑋𝑗) ̸= 0}
5.2. If

⨁︀
𝑠∈𝑆′

𝑠 ≃ 𝐹 (𝑍𝑗) then break

5.3. Compute 𝑍𝑖 = 𝐼(𝑋𝑖)

5.4. Iteratively build the quotient by the 𝑍 ′
𝑖 = 𝑍𝑖/

⨁︀
𝑠∈𝑆′ 𝑠

5.5. compute all simple subobjects of 𝑍 ′
𝑖 and add all new ones to 𝑆

Note that the quotients 𝑍𝑖/𝑠 are the cokernels of the embeddings 𝑠 →˓ 𝑍𝑖, which are
basis vectors of Hom(𝑠, 𝑍𝑖).

3. Non-Split Centers

In this section we want to take a look at some properties of the center when the ground
field 𝕜 is not algebraically closed. Thus for this chapter if not otherwise stated let 𝒞 be a
spherical fusion category over 𝕜 such that dim 𝒞 ̸= 0.

Definition 3.1. Let 𝕜 →˓ K be a field extension. We define the category 𝒦 ⊗ 𝒞 to have
the same objects as 𝒞 and morphism spaces are given by

HomK⊗𝒞(𝑋, 𝑌 ) = K⊗𝕜 Hom𝒞(𝑋, 𝑌 ).

If 𝒞 is split semisimple then K⊗ 𝒞 is again a spherical fusion category. If not it might
occur that an endomorphism algebra gains idempotents. Consider the example that an
endomorphism algebra is isomorphic to C as an R-algebra, i.e has a genarator with minimal
polynomial 𝑥2 + 1, then tensoring with C will yield new idempotents corresponding to the
the eigenvalues ±𝑖 of the generator. Thus K⊗ 𝒞 is no longer karoubian hence not abelian.
This means we will need to consider the karoubian closure K⊗ 𝒞 : = Kar(K⊗ 𝐶), which
is again a spherical fusion category.

Definition 3.2. We define a functor K⊗− : 𝒞 → K⊗ 𝒞 mapping objects to themselves
and morphisms 𝑓 ∈ 𝒞 to 1⊗ 𝑓 .

Remark 3.3. By definition 3.2 we will consider K⊗𝑋 for an object 𝑋 ∈ 𝒞 as an object of
the karoubian closure K⊗ 𝒞.

In the algebraically closed case it is well known, that FPdim(𝒵(𝒞)) = FPdim(𝒞)2. This
is no longer true when we drop the assumption of 𝕜 beeing algebraically closed. But after
some refinement something similar holds.

We will use the slightly altered definition of the Frobenius-Perron dimension of 𝒞
introduced in [5].
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Definition 3.4. Let 𝑋1, ..., 𝑋𝑛 be the simple objects of 𝒞.

FPdim(𝒞) :=
𝑛∑︁
𝑖=1

FPdim(𝑋𝑖)
2

dimEnd(1) End(𝑋𝑖)

In our case dimEnd(1) End(𝑋𝑖) = dim𝕜 End(𝑋𝑖) since we assume a fusion category with
End(1) = 𝕜. This seems to be a more precise definition since now we obtain the desired
result.

Theorem 3.5 ([5, Chapter 3]).

FPdim(𝒵(𝒞)) = FPdim(𝒞)2

This immediatly implies nice behaviour of the non-split simple objects after extension
of scalars.

Lemma 3.6. Let 𝑍 ∈ 𝒵(𝒞) be simple. Then 𝕜 ⊗ 𝑍 decomposes into a direct sum of
the form 𝑎 ·

∑︀
𝑍𝑖 where the 𝑍𝑖 are non-isomorphic and have the same Frobenius-Perron

dimension.

Proof. Let 𝕜⊗ 𝑍 = 𝑎1𝑍1 ⊕ · · · ⊕ 𝑎𝑛𝑍𝑛. by the Cauchy-Schwarz inequality we have(︃
𝑛∑︁
𝑖=1

𝑎𝑖 · FPdim(𝑍𝑖)

)︃2

≤

(︃
𝑛∑︁
𝑖=1

FPdim(𝑍𝑖)
2

)︃(︃
𝑛∑︁
𝑖=1

𝑎2𝑖

)︃
⇐⇒ (︂

𝑛∑︀
𝑖=1

𝑎𝑖 · FPdim(𝑍𝑖)

)︂2

𝑛∑︀
𝑖=1

FPdim(𝑍𝑖)2
≤

𝑛∑︁
𝑖=1

𝑎2𝑖 .(3.1)

Thus theorem 3.5 forces equalities in 3.1 for all simples 𝑍. These equalities hold if and
only if 𝑎𝑖

FPdim(𝑍𝑖)
=

𝑎𝑗
FPdim(𝑍𝑗)

for all 𝑖, 𝑗.
Now let 𝐴 = End𝑍 be the endomorphism ring of 𝑍. By assumption 𝐴 is a simple

division algebra. Consider the extension 𝑍(𝐴)⊗𝕜 𝐴 wich is as 𝑍(𝐴)-algebra isomorphic to⨁︀[𝑍(𝐴):𝕜]
𝑖=1 𝐴. Finally 𝐴 is central simple as 𝑍(𝐴)-algebra and hence has a splitting field K

such that 𝐴 ∼= Mat𝑛×𝑛(K). We conclude that K⊗ 𝐴 ∼=
⨁︀[𝑍(𝐴):𝕜]

𝑖=1 Mat𝑛×𝑛(K) as K-algebras.
This implies that K⊗ 𝑍 decomposes into [K : 𝕜] non-isomorphic simple objects, each with
multiplicity 𝑛.

This forces all 𝑎𝑖 = 𝑛 and thus all Frobenius-Perron dimensions to be equal. □

Remark 3.7. If 𝕜 is a finite field the statement above is even stronger since all finite
dimensional division algebras over a finite field are fields. Thus a simple object 𝑍 decomposes
into non-isomorphic simples with multiplicity one.
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Example 3.8. the case that a simple object occurs with multiplicity greater than one
from lemma 3.6 can occur. Let 𝐐 be the quaternion group with eight elements and consider
VecQ(𝐐) be the category of 𝐐-graded vector spaces over Q. Then there is a central object
lying over 4 · 𝟏𝐐 corresponding to the four-dimensional irreducible Q-representation of 𝐐.
This object has (similar to the representation) an endomorphism ring isomorphic to the
rational quaternions HQ. Analogously to the representation it decomposes into two copies
of the same simple object over Q(

√
−1).

4. Software framework and implementation

4.1. Implementation. Since the linear algebra involved in the algorithm described above
it is mandatory to use a computer to apply this algorithm. Thus an interface for explicit
fusion categories is needed. We provide such interface as well as the algorithm in a Julia
package called TensorCategories.jl2. The packages allows to construct fusion categories
in primarily two ways. Firstly a category can be implemented by defining types for the
category, objects and morphisms. Then the nessecary structural methods for direct sum,
tensor product, unit, duals, etc. have to be implemented according to the framework.
Details on how to do that are to be found in the documentation. The second option is to
construct a fusion category from 6j-Symbols.

4.1.1. Fusion Categories in Julia. From a theoretical point of view a fusion category is
entirely discribed by its 6𝑗-symbols. But provided only the associators it is not straight
forward to explicitely work with the objects and morphisms in this category. Especially if
we want to express morphisms in a readable manner, i.e. as families of matrices.

4.2. The Non-Split Centers of the Ising Category. We want to examine the center
of the Ising category in the case where it is defined over the minimal field of definition.

We recall that the Ising category has three simple objects 1, 𝜒,𝑋 with multiplication
𝜒⊗𝜒 = 1, 𝜒⊗𝑋 = 𝑋⊗𝜒 = 𝑋 and 𝑋⊗𝑋 = 1⊕𝜒. The non-trivial associator isomorphisms
are given by

𝑎𝜒,𝑋,𝜒 = (−1) id𝑋

𝑎𝑋,1,𝑋 = id1⊕(−1) id𝜒

𝑎𝑋,𝜒,𝑋 = (−1) id1⊕ id𝜒

𝑎𝑋,𝑋,𝑋 =
1√
2

(︂
1 1

1 −1

)︂
id2𝑋

Thus we consider it as defined over Q(
√
2). We start by constructing the Ising category

over the desired field.
2https://github.com/FabianMaeurer/TensorCategories.jl

https://github.com/FabianMaeurer/TensorCategories.jl
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ȷulıa

julia> K,r2 = quadratic_field(2)

(Real quadratic field defined by x^2 - 2, sqrt(2))

julia> I = Ising(K)

Ising fusion category

julia> a,b,c = simples(I)

3-element Vector{SixJObject}:

1

𝜒

X

Then we compute the inductions of the three simple objects and decompose them.

ȷulıa

julia> ia,ib,ic = induction.([a,b,c])

3-element Vector{CenterObject}:

Central object: 3·1 ⊕ 𝜒

Central object: 1 ⊕ 3·𝜒
Central object: 4·X

julia> Z = vcat(indecomposable_subobjects.([ia,ib,ic])...)

6-element Vector{CenterObject}:

Central object: 1

Central object: 1

Central object: 1 ⊕ 𝜒

Central object: 1 ⊕ 𝜒

Central object: 2·𝜒
Central object: 4·X

By checking the Hom-spaces it can be determined which simples are non-isomorphic
and which simples are not split.



COMPUTING THE CENTER OF A FUSION CATEGORY 15

ȷulıa

julia> [dim(Hom(x,y)) for x in Z, y in Z]

6×6 Matrix{Int64}:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 2 0

0 0 0 0 0 4

We can see that there are five non isomorphic simples of which two are non-split.
Indeed we can now examine over which fields they will split. To do so we examine the
endomorphism spaces. The object over 2 · 𝜒 will split if there is an endomorphism that is
a zero-divisor, i.e. if there is a morphism with a non-trivial eigenvalue. Thus we talk a
non-trivial endomorphism and consider the splitting field for its minimal polynomial.

ȷulıa

julia> H = End(C[4])

Vector space of dimension 2 over Real quadratic field defined by x^2 - 2.

julia> minpoly.(basis(H))

2-element Vector{AbstractAlgebra.Generic.Poly{nf_elem}}:

x^2 + 1//4

x - 1

So if we extend the field of definition to the splitting field of 𝑥2 + 1
4
, i.e. Q(

√
2, 𝑖), it will

split. We can now see that object splits. Further more also the fifth simple decomposes
under this extension.
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ȷulıa

julia> Kx,x = base_ring(I)[:x]

(Univariate polynomial ring in x over real quadratic field defined by x^2 - 2, x)

julia> L,i = NumberField(x^2+1, "i")

(Relative number field of degree 2 over real quadratic field defined by x^2 - 2, i)

julia> indecomposable_subobjects(C[4]⊗L)

2-element Vector{CenterObject}:

Central object: 𝜒

Central object: 𝜒

julia> indecomposable_subobjects(C[5]⊗L)

2-element Vector{CenterObject}:

Central object: 2·X
Central object: 2·X

We repreat the process one more time to split also the last two new objects.
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julia> C2 = C ⊗ L

Drinfeld center of Fusion Category with 3 simple objects

julia> simples(C2)

7-element Vector{CenterObject}:

Central object: 1

Central object: 1

Central object: 1 ⊕ 𝜒

Central object: 𝜒

Central object: 𝜒

Central object: 2·X
Central object: 2·X

julia> f,_ = minpoly.(basis(End(C2[6])))

2-element Vector{AbstractAlgebra.Generic.Poly{Hecke.NfRelElem{nf_elem}}}:

x^2 + 1//4*sqrt(2)*i - 1//4*sqrt(2)

x - 1

julia> M,a = NumberField(f,"a")

(Relative number field of degree 2 over relative number field, a)

julia> simples(C2 ⊗ M)

9-element Vector{CenterObject}:

Central object: 1

Central object: 1

Central object: 1 ⊕ 𝜒

Central object: 𝜒

Central object: 𝜒

Central object: X

Central object: X

Central object: X

Central object: X

julia> absolute_simple_field(M)[1]

Number field with defining polynomial x^8 + 1//16

over rational field

Thus we see that the center of the Ising category splits over the field Q( 8
√
−16).
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Figure 1. The explicit center of VecS3 where 𝜉3 is a third root of unity.

(12) (13) (23) (123) (132)

() 1 1 1 1 1

() −1 −1 −1 1 1

2 · ()

⎡⎢⎣ 1 0

−1 −1

⎤⎥⎦
⎡⎢⎣0 1

1 0

⎤⎥⎦
⎡⎢⎣−1 −1

0 1

⎤⎥⎦
⎡⎢⎣−1 −1

1 0

⎤⎥⎦
⎡⎢⎣ 0 1

−1 −1

⎤⎥⎦

(23)⊕ (12)⊕ (13)

⎡⎢⎢⎢⎢⎣
0 0 1

0 1 0

1 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
0 1 0

0 0 1

1 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
0 0 1

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦

(23)⊕ (12)⊕ (13)

⎡⎢⎢⎢⎢⎣
0 0 −1

0 −1 0

−1 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
0 1 0

1 0 0

0 0 −1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
−1 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
0 −1 0

0 0 −1

1 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0 0 1

−1 0 0

0 −1 0

⎤⎥⎥⎥⎥⎦
(132)⊕ (123)

⎡⎢⎣0 1

1 0

⎤⎥⎦
⎡⎢⎣0 1

1 0

⎤⎥⎦
⎡⎢⎣0 1

1 0

⎤⎥⎦ id id

(132)⊕ (123)

⎡⎢⎣ 0 𝜉3

𝜉23 0

⎤⎥⎦
⎡⎢⎣0 1

1 0

⎤⎥⎦
⎡⎢⎣ 0 𝜉23

𝜉3 0

⎤⎥⎦
⎡⎢⎣ 0 𝜉23

𝜉3 0

⎤⎥⎦
⎡⎢⎣ 0 𝜉3

𝜉23 0

⎤⎥⎦
(132)⊕ (123)

⎡⎢⎣ 0 𝜉23

𝜉3 0

⎤⎥⎦
⎡⎢⎣0 1

1 0

⎤⎥⎦
⎡⎢⎣ 0 𝜉3

𝜉23 0

⎤⎥⎦
⎡⎢⎣ 0 𝜉3

𝜉23 0

⎤⎥⎦
⎡⎢⎣ 0 𝜉23

𝜉3 0

⎤⎥⎦

4.3. Results. Using the algorithm and especially the software we can compute the center
of a given fusion category explicitly by listing the tuples (𝑍, 𝛾) of simple objects in the
center.

4.3.1. Explicit Centers for Graded Vector Spaces. Let 𝐺 be a group and Vec𝐺 the category
of finite-dimensional 𝐺-graded vector spaces. By theoretical investigations we can charac-
terize the center already. But a unique feature of our approach is the explicit computation
of objects together with half-braidings.

Consider 𝐺 = 𝑆3 the symmetric group of order three. We give a full table of objects
with half-braidings in figure 1.

4.3.2. The Fusion Category from the Haagerup Subfactor. The fusion categories from
the Haagerup subfactor are a very important example for fusion categories coming from
operator algebras. There are three fusion categories in the equivalence class of the Haagerup
fusion category. We consider the one with six simple objects, since it is multiplicity free.
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The category ℋ has the following multiplication table given in figure 4.3.2 while the
associativity constraints, i.e. the 6𝑗-symbols, can be found in [7].

Figure 2. Multiplication table of the Haagerup fusion category.

1 𝛼 𝛼* 𝜌 𝛼𝜌 𝛼*𝜌

1 1 𝛼 𝛼* 𝜌 𝛼𝜌 𝛼*𝜌

𝛼 𝛼 𝛼* 1 𝛼𝜌 𝛼*𝜌 𝜌

𝛼* 𝛼* 1 𝛼 𝛼*𝜌 𝜌 𝛼𝜌

𝜌 𝜌 𝛼*𝜌 𝛼𝜌 1⊕ 𝜌⊕ 𝛼𝜌⊕ 𝛼*𝜌 𝛼⊕ 𝜌⊕ 𝛼𝜌⊕ 𝛼*𝜌 𝛼* ⊕ 𝜌⊕ 𝛼𝜌⊕ 𝛼*𝜌

𝛼𝜌 𝛼𝜌 𝛼*𝜌 𝜌 𝛼⊕ 𝜌⊕ 𝛼𝜌⊕ 𝛼*𝜌 1⊕ 𝜌⊕ 𝛼𝜌⊕ 𝛼*𝜌 𝛼* ⊕ 𝜌⊕ 𝛼𝜌⊕ 𝛼*𝜌

𝛼*𝜌 𝛼*𝜌 𝜌 𝛼𝜌 𝛼* ⊕ 𝜌⊕ 𝛼𝜌⊕ 𝛼*𝜌 𝛼⊕ 𝜌⊕ 𝛼𝜌⊕ 𝛼*𝜌 1⊕ 𝜌⊕ 𝛼𝜌⊕ 𝛼*𝜌

It is known that the center of ℋ has twelve objects. We can compute them explicitely
such that the forgetful functor is given by the matrix in figure 4.3.2.

4.3.3. Vercleyen-Singerland Fusion Category.
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