Ulrich Thiel

Computational aspects of Calogero-Maser spaces

S1. Complex reflection groups
A complex reflection group (crg) is a finite subgroup
$$W = GL(2)$$
 which is generated
by reflections, i.e. by elements selve st. calimy. (ker(idy-si)) = 1.
Fixed space of s
A reflection representation of an (abstract) group W is a faithful representation
g: $W \rightarrow GL(2)$ st. $g(W)$ is a crg.
g ind.
The irreducible crg were dassified by Shephard-Todd (1954):
* Sp in an irred. refl. rep ("class G")
* Cm in a faithful rep ("class G")

My opinion: it is important not to forget about the exceptional groups: are we studying "only" combinatorics or really reflection symmetries in general?

>
$$R := (nvariantRing(W);$$

> Presentation(R);

$$\$3.Calogero-Moser spaces$$

The cotangent bundle of $\%$ is $T^{*}\% = \% @ \%^{*}$.

Physics: T^{*}N is the phase space for the configuration space ?.
A mechanical system is defined by a "Hamiltonian (energy) function" on T^{*}N.
Key for deducing the Hamiltonian equations of motion is the symplectic structure
on T^{*}N:
$$w((y, x), (y', x')) := x'(y) - x(y')$$

Now, suppose I has symmetries, given by a finite group $G = GL(P)$.
 \sim induced action $G \cap T^*N$.
The phase space taking these symmetries into account should be
 $X_o := T^*N/G = Spec C[N \oplus P^*]^G$.

Key problem: X₀ is singular (
$$W \cap Y \otimes Y \otimes Z = SP(Y \otimes Y^*) = SL(Y \otimes Y^*)$$
, so no refle)
~> example of a symplectic singularity (~> lain's + Alastair's courses)

Let's focus on deformations.

We don't want random deformations: recall that we have ω on $T^*\eta$, and this descends to a symp. form on χ_0^{reg} . ~> Should only consider deformations deforming was well, symplectic resolution. Problem: w lives on Ko, not glabelly on Xo, so cannot directly deform this But: ω induces a <u>Poisson bracket</u> globally on C[202#J^W via $\{X_i, Y_i\} = O = \{Y_i, Y_i\}, \{X_i, Y_i\} = S_{ij}$. $\{X_i, Y_i\} = S_{ij}$. Lie Gracket + LeiGniz rule

~ Want to consider <u>Poisson deformations</u> of Xo.

Suppose from now on that
$$G = W \subset GL(M)$$
 is a crg.
Then all (!) Poisson deformations of X₀ can be constructed as follows.
= group ring CLMOM⁴JW as C-vs
with mult git = $\frac{3}{4}g$ a on the constructed as follows.
 \downarrow the finite constructed as follows.
 \downarrow the form $C \langle \mathcal{M} \oplus \mathcal{M}^{*} / [X_{i}, K_{j}] = O = [X_{i}, Y_{j}]$
 \downarrow the form $C \langle \mathcal{M} \oplus \mathcal{M}^{*} / [X_{i}, K_{j}] = O = [X_{i}, Y_{j}] = \sum_{k \in \mathcal{M}} (X_{i}, K_{j}] = \sum_{k \in \mathcal{M}} (X_{i}, K_{j}] = \sum_{k \in \mathcal{M}} (X_{i}, K_{j}] = \sum_{k \in \mathcal{M}} (X_{i}, K_{i}] = \sum_{k \in \mathcal{M}} (X_{i}, K_{i}]$

Recall:

$$\begin{aligned} & H_{c} := \int_{t_{w}, k_{1}} \int_{s} \int_{s \in R_{c}(k_{1}, k_{1})} \int_{s \in R_{c$$

~~ CHAMP (2015)

> #:= Rational Cherednik Alsebra (W,O: Type:= "EG"); > H;> H. 1; > H.G;> H. 1 * H.6 ; > #.6 * #.1; > eu = EulerElement(H); > eu2; > lsCentral (eu);

St. Computing
$$X_{c}$$
 (it is Bonnafé)
Consider the generic algebra \underline{H} . Let $\underline{Z} := Z(\underline{H})$.
If $h \in \underline{H}$, then $h = \sum_{u \in U} h_{uv}$ in the PBW basis, $h_{v} \in \underline{R}[\underline{\eta} \oplus \underline{\theta}^{t}]$.
Consider the map Trunc: $\underline{H} \longrightarrow \underline{R}[\underline{\eta} \oplus \underline{\theta}^{t}]$, $h \mapsto h_{\underline{I}}$.
Lemma: Trunc induces an isomorphism $\underline{Z} \xrightarrow{\sim} \underline{R}[\underline{\eta} \oplus \underline{\theta}^{t}]^{W}$ of (gradid) \underline{R} -modules.
What we did: found an algorithm to compute Trunc-1(\underline{f}) for $\underline{f} \in \underline{R}[\underline{\eta} \oplus \underline{\theta}^{t}]^{W}$.
 \widehat{f} basically an inductive
 $deformation precedure$

Lemma: If
$$(f_i)_{i=b,r}$$
 is a (minimal) system of algebra generators of $\mathcal{D}[\mathcal{T}, \mathcal{O}\mathcal{F}^{\mathcal{T}}]^{W}$,
then $(\operatorname{Trunc}^{-}(f_i))_{i=b,r}$ is a (minimal) system of algebra generators of \mathbb{Z} .

What we also did. found an algorithm to deform the relations of a presentation of
$$Z_0 = \mathbb{C}[\mathcal{H} \oplus \mathcal{G}^*]^W$$
 to a presentation of Z_0 .

$$\frac{55}{C} \times \sum_{c=1}^{C^{\times}} and termindizations of X_{o}$$

$$C(\mathcal{PP}^{\times}) \times W \text{ has a } \mathbb{Z}\text{-grading } (\deg \mathcal{P}^{\times} = 1, \deg \mathcal{P} = -1, \deg \mathcal{W} = 0)$$

$$\rightarrow H_{c} \text{ has } \mathbb{Z}\text{-stading } \rightarrow \mathbb{Z}\text{ has } \mathbb{Z}\text{-stading } \sim X_{c} \text{ has } \underline{\mathbb{C}}^{\times}\text{-action } (\text{ is conical}).$$

$$C^{\times}\text{-quiv}$$

$$One \text{ can show: } \mathbb{C}[\mathcal{P}^{\times}]^{\mathbb{W}} \oplus \mathbb{C}[\mathcal{P}^{\times}]^{\mathbb{W}} \oplus \mathbb{C}\mathbb{Z}_{c} \rightarrow \text{finile morphism } Y_{c} : X_{c} \rightarrow \mathcal{H}/W \times \mathcal{H}/W$$

$$Only \mathbb{C}^{\times}\text{-fixed point in } \mathcal{H}/W \times \mathcal{H}/W \text{ is the origin } \sim X_{c}^{\mathbb{C}^{\times}} = Y_{c}^{-1}(0) \quad (\text{finik set})$$

$$\text{Let } \mathcal{L}:= \{c: \text{Refl(W)}/W \rightarrow \mathbb{R}\}, \quad \mathcal{N}:= \max_{c \in \mathcal{L}} |X_{c}^{\mathbb{C}^{\times}}|, \text{ and } \mathcal{L}_{CM}:= \sum_{c \in \mathcal{L}} |X_{c}^{\mathbb{C}^{\times}}| < N_{c}^{\mathbb{C}^{\times}}| \\ \text{So, } \mathcal{L}|\mathcal{L}_{cM} \text{ is where } \mathbb{C}^{\times}\text{-fixed points are "generic".}$$

Key fact (Bellamy): Let
$$\pi: Y \longrightarrow X_0$$
 be a Q-factorial terminalization (exists bei BCHM)
(keep in mind: Y smooth $\Leftrightarrow \pi$ is a crepant (\Leftrightarrow symplectic) resolution.)
Then $C \sim \operatorname{Pic}(Y) \otimes_{\mathbb{Z}} \mathbb{R}$ naturally as \mathbb{R} -rector spaces.

Let
$$Mor(\pi)$$
 be the cone of π -morable line bundles. This decomposes into the ample cones of the various other \mathbb{Q} -factorial terminalizations of Xo.
The codim-1 faces of each of the ample cones generate a hyperplane arrangement in \mathcal{L} .

(#orbits of chambers) under action of the Namihawa Wey (gray) ~> allows us to count # of O-factorial terminalizations of Xo

> H := Rational Cherednik Algebra(W, D); > cm := Calogero Moso Families (H : UseDB:= false); > Keys(cm);